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Abstract: Urban neighborhoods are a unique form of geography in that their boundaries
rely on a social definition rather than a well-defined physical or administrative boundary.
Currently, geographic gazetteers capture little more than then the centroid of a neighbor-
hood, limiting potential applications of the data. In this paper, we present µ-shapes, an
algorithm that employs fuzzy-set theory to model neighborhood boundaries suitable for
populating gazetteers using volunteered geographic information (VGI). The algorithm is
evaluated using a reference dataset and VGI from the Map Kibera Project. A confusion
matrix comparison between the reference dataset and µ-shape’s output demonstrated high
sensitivity and accuracy. Analysis of variance indicated that the algorithm was able to dis-
tinguish between boundary and interior blocks. This suggests that, given the existing state
of GIS technology, the µ-shapes algorithm can enable neighborhood-related queries that
incorporate spatial uncertainty, e.g., find all restaurants within the core of a neighborhood.

Keywords: boundary delineation, urban neighborhoods, volunteered geographic informa-
tion, spatial footprint, vague spatial region

1 Introduction

Operationally, neighborhood boundaries can be defined by the degree of consensus be-
tween individuals. Ethnographic studies of neighborhood boundaries demonstrate that
individuals will demarcate their neighborhoods by using the physical and institutional
characteristics of the neighborhood, its class, race, and ethnic composition, perceived crim-
inal threats from within and outside the neighborhood, and symbolic neighborhood iden-
tities [2]. Guo and Bhat [17] offer a functional definition of neighborhoods as discreet,
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non-overlapping communities generally defined by their physical geographies, natural ad-
vantages, and transportation systems. Urban neighborhoods have also been delineated by
their patterns of land use such as types of residential or commercial buildings [9, 15].

Neighborhood delineation is a multidisciplinary task with two primary goals. The first
is to define a neighborhood as a unit of observation. Neighborhoods are studied in housing
market research [3], crime analysis [13, 29], and health research [25, 26, 31]. These studies
are more concerned with understanding the effects a community and its built environment
have on social processes rather than defining urban spaces with a common name. The sec-
ond goal (and the primary aim of this paper) is more concerned with identifying the spatial
extent of neighborhoods to populate gazetteers [21, 34, 35]. This has utility for queries in
spatial databases. For example, a query to find all the restaurants within a particular neigh-
borhood would rely on an accurate gazetteer containing the neighborhood boundaries.

The purpose of this research is to demonstrate a way to automate the delineation of
urban neighborhood boundaries suitable for populating a gazetteer. A suitable method
should draw on local data to delineate neighborhoods, allowing for an accurate represen-
tation of perceived boundaries. Additionally, the method should adhere to the logic that
individuals use to demarcate their neighborhood boundaries. That is, the method should
consider geographic context (e.g., major road boundaries or rivers) as a means to demar-
cate boundaries. Finally, the result of the method should account for spatial uncertainty in
delineating the boundaries. Specifically, we apply a fuzzy-set model to address geographic
vagueness as discussed in Varzi [32].

The following presents an expansion of the betashapes algorithm described in Erle [10].
While the original betashapes does not take into account context or uncertainty, it does
provide a scalable solution to delineate neighborhood boundaries that adheres to the logic
individuals use to demarcate their neighborhoods. We use the term µ-shapes to describe
our algorithm because it incorporates fuzzy set theory to represent spatial uncertainty [36].

Fuzzy sets generalize traditional sets by generalizing the binary membership response,
usually to a functional response with continuous range [0, 1] [36]. Fuzzy sets and the ac-
companying fuzzy logic have been used in a broad range of residential and industrial (e.g.,
railroad systems) applications [33]. Fuzzy geographic applications were conceived early
on [23], with the consequent fuzzy modeling of land-use classification [22, 8], and fuzzy
representation of continuous spatial phenomena [14, 37].

This paper presents an expansion of the betashapes algorithm, incorporating fuzzy logic
for the boundary demarcation process to quantify spatial uncertainty. In Section 2, we list
the commonly used approaches to delineate urban neighborhoods. In Section 3, we present
our method of delineating neighborhood boundaries. Section 4 presents an accuracy as-
sessment for our method. Section 5 concludes with a discussion of future work.

2 Related work

A number of researchers [2, 6, 24, 30] have suggested using the aggregated cognitive maps
of individuals to define neighborhood boundaries. In a study of neighborhoods in a city
in Ohio, Coulton et al. [6] asked residents to draw their neighborhood boundaries onto
a printed map. The researchers aggregated the core areas where 70% of respondents had
drawn boundaries containing the same area [6]. Their research demonstrated that residents
consistently drew their neighborhood boundaries along physical barriers or areas that were
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considered to have different socio-demographic attributes. While this work demonstrates
a way to map the perceived boundaries of urban neighborhoods, the time to recruit and
train local experts is prohibitive in relation to setting provisions to collect volunteered geo-
graphic information.

Other solutions have been explored to derive the spatial footprints of vague geo-
graphic regions (e.g., neighborhoods) using aggregated volunteered geographic informa-
tion [7, 16, 18]. These solutions rely on point-to-area methods to estimate the spatial foot-
print of imprecise geographic regions. One key advantage of point-to-area methods is that
they are able to leverage volunteered geographic information (VGI) from popular social
media platforms and thus provide a scalable means to populate gazetteers.

Kernel density estimates (KDE) are commonly used to delineate vague regions from
point datasets [16, 20]. This method assigns a certainty to every point using a kernel func-
tion. This has the advantage of simplicity but lacks support for geographic context. Addi-
tionally, KDE allow for areas to be disjoint and may not create a realistic representation of
neighborhoods which are compact and spatially contiguous.

Alani et al. [1] use Voronoi diagrams to estimate the areal extent of large vernacular
regions of Scotland. This method requires the use of negative space. That is, it is necessary
to have a set of points that are positively in the region as well as a set that are definitely
outside of the region. A key limitation to this method is that the borders are unlikely to
adhere to standard boundaries, since Voronoi cells are driven by the point distribution of
the VGI.

Reinbacher et al. [27] used α-shapes to determine the spatial extent of the South of
France from point coordinates. This approach cannot deal with context (e.g., physical
boundaries) or areas with varying density. Density is especially problematic when using
geographic information derived from social media posts. For example, popular tourist
destinations tend to be over represented in Flickr datasets whereas residential areas are un-
derrepresented in coverage [18]. This makes it difficult to determine the extent of primarily
residential neighborhoods.

Wilske [34] uses geotagged social media documents (Flickr photos) annotated with
place names to approximate the boundaries of neighborhoods in New York City. The au-
thor uses fuzzy sets to represent the spatial footprint of each neighborhood. The model rep-
resents a vague region through a pair of concentric regions with determinate boundaries
[5]. This model assumes that a vague region has a core area that can be unambiguously
assigned to the region, the lower approximation, surrounded by an area where member-
ship within the region is uncertain, the upper approximation. Wilske [34] uses the spatial
median derived from all geo-tagged documents to define the lower approximation of the
model and defines the upper approximation as the convex hull (of the same set of geo-
tagged documents).

The method described in Wilske [34] provides a scalable means to populate gazetteers
using the spatial footprints of neighborhood boundaries. This method has two key limi-
tations. First, the convex hull drawn around the individual VGI points is arbitrary and is
unlikely to adhere to the perceived boundaries of individual residents. Second, the distance
from the spatial median is not an informative measure for vague boundaries. The certainty
that an area belongs to a neighborhood is not the same in all directions from the spatial
median and is determined by other factors (e.g., physical barriers).

Erle [10] provides a possible point-to-area solution to generate neighborhood bound-
aries that considers the physical geography of a city. His method uses line datasets for
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major physical barriers (e.g., roadways, rivers, railroads) to partition the area of a city into
meaningful geographic primitives (blocks). Each block is then assigned to a neighborhood
based on its proximity to a set of geographic coordinates tagged with a place name. A key
limitation to this approach is that it does not account for spatial uncertainty when deter-
mining neighborhood boundaries. In the next section, we present a modification to the
betashapes algorithm using an index to represent spatial uncertainty.

3 Methods

Given a spatial extent S and a set of associated features (e.g., roads, rivers, railways), we
can partition S by the features’ boundaries, into the set of blocks B. (While geographic
feature data may not be sufficient to partition, e.g., a rural spatial extent or a spatial extent
with few associated geographic layers, we assume the feature set of an urban environment,
particularly one associated with VGI, is rich enough to partition S. Spatial extents with
feature sets failing this assumption our beyond the scope of this work.) A µ-shape is a
contiguous region R ⊆ B, such that, each b ∈ B comprising R has one or more fuzzy
metrics reflecting b’s degree of membership to R. Intuitively, we think of each µ-shape as
a fuzzy neighborhood. Given S and a set of polylines representing urban boundaries and
natural barriers, point set P of VGI, and a user-defined number, k, of nearest neighbors (by
Euclidean distance from the centroid of a block), the µ-shapes algorithm (Algorithms 1–3)
generates a set of µ-shapes, each a contiguous collection of blocks, with boundaries that
adhere to the physical structure of a city, and two fuzzy metrics. The first metric, µVGI(b),
is the fraction of VGI from block b’s k nearest neighbors reporting membership to R. The
second metric, µADJ(b), is the fraction of blocks adjacent to b, reporting the same parent
neighborhood R as b.

Algorithm 1 µ-shapes

Input: A set of points P over a spatial extent S, each with a VGI neighborhood name; a set
of polylines, representing urban boundaries and natural barriers; and a natural number k,
where 1 ≤ k ≤ |P |.
Output: A set of blocks B that partition S; for each block in B, the assigned parent neigh-
borhood’s name and µVGI and µADJ values

1. Given S and a set of polylines, representing urban boundaries and natural barriers, gen-
erate the corresponding set of blocks B, where B is a partition of S.

2. For each block b in B:

a. Determine the k nearest neighbors, the points closest to the centroid of b, Pb;

b. BlockNbhd(b, Pb): compute b’s parent neighborhood name and µVGI(b);

c. BlockScore(b, Ab): compute µADJ(b).

In this work, each block is assigned to a unique neighborhood, or in rare cases, unas-
signed. We could have defined the µ-shape to assign each block fuzzy metric scores for
each neighborhood name, but this would have created a scaling challenge. Thus, we opted
for low computational cost over complete fuzzy membership. Alternative definitions of
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Algorithm 2 BlockNbhd(b, Pb)

Input: Block b and the k nearest points from the centroid of b, Pb

Output: The name of b’s parent neighborhood and the VGI membership value of b, µVGI(b)

1. If name has a mode m among the points in Pb:

a. Set block name to m, b.name = m;

b. Compute µVGI(b) = |m|/k, the fraction of points in Pb with name b.name.

2. Else:

a. If |Pb| == 2:

i. Block b is not assigned to a neighborhood;

ii. End.

b. Else:

i. Remove the furthest point from Pb, Pb ← Pb − “furthest point”;

ii. BlockNbhd(b, Pb);

iii. End.

c. End.

3. End.

µ-shape could be formulated that enrich neighborhood membership with limited increase
in computational cost.

µVGI and µADJ address complementary aspects of neighborhood membership. The for-
mer metric is a measure of social consensus and therefore dependent on variations in the
population that contributes VGI, as well as confounders, such as mobile device dead zones.
The latter metric is a measure of physical adjacency and therefore subject to boundary ef-
fects and the geometric nature of the urban and natural boundaries. In the section that
follows, we evaluate the µ-shapes algorithm and the performance of the two fuzzy metrics,
via a case study.

Algorithm 3 BlockScore(b, Ab)

Input: Assigned block b and its adjacent blocks Ab

Output: The adjacency membership of b, µADJ(b)

1. Initialize Adj Count = 0.

2. For each adjacent block a in Ab:

a. If a.name == b.name:

i. Adj Count++;

b. End.

3. µADJ(b) = Adj Count/|Ab|, the fraction of blocks in Ab with the same name as b.

4. End.
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4 Experiment and results

We present the performance of our algorithm against one technique for delineating neigh-
borhood boundaries. Namely, we evaluate how well our algorithm compares to hand
drawn boundaries by community experts. A full comparison of our algorithm to other
methods is beyond the scope of this project and is left for future work.

The test dataset was derived from the Map Kibera Project (http:�mapkibera.org), a res-
ident led effort to map the neighborhoods and community amenities of the Kibera region
of Nairobi, Kenya. The dataset consists of a shapefile of VGI, GPS points with an assigned
toponym for one of fifteen neighborhoods. Additionally, the dataset contains a set of poly-
gons for the neighborhood boundaries. The line dataset used to represent major physical
barriers (and thus potential neighborhood boundaries) was derived from road, river, and
railway data courtesy of OpenStreetMap, an open source repository of transportation data.

The Map Kibera Project is a community and NGO effort to collect significant geographic
features of Kibera. The group splits into teams to collect points of interest (e.g., schools,
clinics) throughout the community using GPS receivers. Each point has the neighborhood
that the point resides in as part of its metadata. The neighborhood assignment to indivi-
dual points was determined through consensus with the residents involved in the project.
We use the point locations and the metadata as the input to test our algorithm. The neigh-
borhood boundaries were hand-drawn over a satellite image of Kibera by a group of resi-
dents and volunteers. We use the resident drawn boundaries as the basis of comparison
for our algorithm. The Kibera dataset was selected because the neighborhood boundaries
were community derived rather than defined administratively or by a cartographic expert.
Moreover, the VGI point data is well distributed and each labelled point falls into its re-
spective neighborhood. Figure 1 shows the neighborhood boundaries overlaid with their
respective neighborhood points.

Figure 2 shows the areal extent of Kibera overlaid with a dataset of aggregated line
barriers (roadways, rivers, and railways). The blocks that are used for the evaluation were
derived from the polyline data and the vector shapefile for the boundary of Kibera. The
Kibera boundary data was split into pieces by the overlain polyline data. In the evaluation,
the blocks are the spaces between the polylines. This was done in ArcGIS using the “Cut
Polygons” tool [11]. The size and shape of the blocks are determined by, and sensitive to
the availability of, the polyline data.

Referring to the algorithm, each block is assigned to a neighborhood based on the mode
nominal value of the nearest k VGI points. After each block is assigned to a neighborhood,
the fuzzy metrics µVGI and µADJ are computed, indicating the degree of membership of a
block to the neighborhood. Figure 3 presents the neighborhood assignment. Each neigh-
borhood derived from the µ-shapes algorithm is overlaid with its original neighborhood.
Block misassignment can occur if either the original boundaries are not derived from a line
barrier (e.g., a park) or if the point coverage for nearby primitives is sparse.

A key limitation of the original betashapes algorithm [10] is that it does not provide
a measurement for spatial uncertainty. It is important to express and be able to visualize
spatial uncertainty because of the inherent vagueness of neighborhood boundaries. Thus,
the use of fuzzy sets in this paper. Figure 3 shows the neighborhoods derived from the
µ-shapes algorithm overlaid with their respective blocks. The red boundaries illustrate the
boundaries of the reference neighborhoods.
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Figure 1: Kibera reference neighborhoods and the corresponding VGI point dataset, where
each VGI point falls in its parent neighborhood.

Figure 4 presents the mapped µADJ and µVGI results. The bottom panel presents neigh-
borhood assignment using the adjacency fuzzy metric, µADJ, while the top panel presents
assignment when using the VGI fuzzy metric, µVGI. Here, we used Jenks natural breaks to
stratify the symbology in each figure. Darker areas on the map indicate a higher member-
ship value as determined by µADJ or µVGI.

For comparison purposes with the reference dataset, which has a traditional set notion
of membership, we merge the blocks by their assigned neighborhood, regardless of the
fuzzy metric scores. In practice, a minimum fuzzy metric threshold may improve accuracy
of neighborhood assignment. We opted to compare block assignment to neighborhoods
against the reference dataset, using the minimum membership assignment.

To compare the algorithm’s neighborhood assignment against the reference neighbor-
hoods, a confusion matrix was calculated. The confusion matrix was derived by compar-
ing the reference neighborhoods against the µ-shape neighborhoods (Figure 5). From the
confusion matrix, a number of classification metrics can be derived. We computed the
sensitivity, the accuracy, and the kappa coefficient for each neighborhood, and the overall
accuracy and kappa coefficient for the algorithm’s entire output. A kappa coefficient is a
measure of inter-rater agreement which determines the extent to which the agreement of a
classification is due to “true” agreement rather than mere “chance agreement” [4].

Tables 1 and 2 present the neighborhood and overall results, respectively. The overall
accuracy of the neighborhood classification is approximately 90%, with a kappa coefficient
of 91% better than random labelling. The average sensitivity is approximately 90% and all
but four classes have a sensitivity greater than 85%. The lowest sensitivity (Kambi Muru)
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Figure 2: Kibera blocks (n = 235) generated by Kibera Highways line dataset from Open-
StreetMap.

can be explained by the proximity measurement used to classify neighborhood blocks:
while a VGI point labelled Kambi Muru overlaps a misclassified block, the mode for the
nearest k points was attributed to the Kisumu Ndogo neighborhood. This demonstrates
that the µ-shapes algorithm is sensitive to the selection of k and the VGI’s distribution.

We evaluated µADJ and µVGI’s ability to differentiate between a neighborhood’s boun-
dary blocks D (blocks that are adjacent to or overlap two or more neighborhoods), exterior
blocks E (blocks that are not in D and on the boundary of the spatial extent S), and interior
blocks I (blocks that are not in D or E), relative to the neighborhoods. To compute D, E,
and I , we used a combination of spatial queries in ArcGIS [11], followed by visual inspec-
tion to finalize assignment to D, E, or I . This assignment was made only when there was
agreement between the reference and computed neighborhoods and when a block could
be assigned to a unique block category. From the 235 Kibera blocks, we found 99 boundary
blocks D, 41 exterior blocks E, 71 interior blocks I , and 24 blocks for which assignment
was not possible. We applied one-way analysis of variance test (ANOVA) to the values of
µADJ and µVGI by block group (D, E, and I), followed by multiple comparisons analysis
(Table 3). For each fuzzy metric, for each block group pair, the table summarizes the dif-
ference of means, 95% confidence intervals of the lower and upper limits of the difference of
means, and the p-value. If the difference of means interval does not contain 0 and p ≤ 0.05,
then the fuzzy metric has successfully differentiated between the block groups. We see
that µADJ and µVGI were able to distinguish between block groups D and E, and D and
I , but not E and I . Since E and I can be distinguished by virtue of their relationship to
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Figure 3: The reference Kibera neighborhoods (red polylines) and the algorithm’s block
assignment to neighborhoods (colored by neighborhood).

the boundary of the spatial extent S, the results imply that we can distinguish between any
two block groups.

Since the ANOVA results are similar for µADJ and µVGI, it is not clear that both metrics
are needed to score block membership to a neighborhood. To assess the degree of inde-
pendence of the two fuzzy metrics for this case study, we computed the linear correlation
coefficient between µADJ and µVGI, yielding R2 = 0.38. The low correlation indicates a
degree of independence between the metrics, suggesting that further investigation of µADJ

and µVGI is required.

5 Discussion and future work

The µ-shapes algorithm couples VGI data, specifically OpenStreetMap data and geotagged
social media posts, with existing natural and infrastructural boundary data to address au-
tomated neighborhood delineation. Despite the data dependencies, in light of the recent
surge in VGI, we expect the µ-shapes algorithm to be broadly applicable.

The confusion matrix comparison between the reference dataset and algorithm’s output
demonstrated high sensitivity and accuracy for this case study. ANOVA indicated that
µADJ and µVGI were able to distinguish between boundary (D) and interior (I) blocks, but
neither metric could differentiate between exterior (E) and interior (I) blocks. However,
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Figure 4: Kibera neighborhoods and the blocks comprising them, scored according to the
fuzzy metrics µADJ (bottom) and µVGI (top).

a simple spatial query can distinguish between blocks in E and I based on whether they
lie on the boundary of the spatial extent S or not. Thus, given the inputs required by
this research and a GIS to perform simple spatial queries, the µ-shapes algorithm proves
effective in delineating neighborhoods, and in distinguishing between different parts of a
neighborhood.

The µ-shape was defined for scalability, which is why each block is assigned to a unique
neighborhood. For large geographic regions, it would be impractical to assess the degree
of block membership to each neighborhood in the feature space. Having said that, alterna-
tive µ-shape definitions that score fuzzy block membership to multiple neighborhoods is
conceivable, and may be desirable in certain instances.

There are a number of practical limitations to this algorithm. First, if a neighborhood
lacks VGI representation, nearby neighborhoods will expand without limitation. Second,
it requires supporting vector data to construct the blocks. Third, the algorithm performs
poorly when there are too few points to initialize a mode or when the point distribution is
biased. Finally, the output is sensitive to the selection of k (nearest neighbors).

It is worth noting that the Kibera dataset provides a near perfect dataset to test the
µ-shapes algorithm. Other datasets, such as geotagged photos, will inevitably require
some pre-processing step to filter outliers and mistagged points. The Kibera neighbor-
hood boundaries were also mapped directly to hard physical barriers (i.e., roadways). The
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Figure 5: The reference Kibera neighborhoods (top) and the neighborhood assignments, as
computed by the µ-shapes algorithm (bottom).

µ-shapes algorithm can accommodate other physical barriers, such as sharp changes in ele-
vation or large parks, or more abstract boundaries, such as areas of different socio-economic
status, only if these boundaries/barriers have been previously delineated.

Previous work has addressed topological classification of a region based on a point-
set of data, and could be applied to handle misassignment arising from boundary, or other
topological features [12, 19, 28]. This could support automated handling of each topological
subcase rather than the present system that requires a human to form a judgement about
the block’s group membership, when the fuzzy metrics have low scores.

In future work, we will evaluate a broader scope of membership metrics, including the
application of consensus over a set of metrics to arrive at a fuzzy determination of block
membership to a neighborhood. The algorithm will also be generalized to accommodate
sparse datasets, to weigh the importance of the k nearest neighbors according to their dis-
tance from the block, to let k vary according to the distribution of VGI, and to address
regions where block computation is challenged by limited boundary information.
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Reference class Sensitivity Accuracy Class kappa

Kianda 1.00 0.97 1.00

Silanga 1.00 0.97 1.00

Ayany 0.98 1.00 0.98

Raila 0.98 0.98 0.98

Lindi 0.97 0.93 0.96

Kisumu Ndogo 0.96 0.86 0.96

Gatwekera 0.96 0.93 0.95

Laini Saba 0.95 0.87 0.94

Mashimoni 0.95 0.97 0.95

Soweto East 0.88 1.00 0.87

Karanja 0.87 0.62 0.86

Makina 0.85 0.95 0.83

Soweto West 0.78 0.92 0.77

Olympic 0.75 0.93 0.74

Kambi Muru 0.70 0.95 0.70

Table 1: Neighborhood-level assessment of the µ-shapes algorithm’s classification.

[tbh!]
Overall Accuracy Overall Kappa

.90 .91

Table 2: Overall assessment of the µ-shapes algorithm’s classification.
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