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Abstract: Street networks are ubiquitous components of cities, guiding their development
and enabling movement from place to place; street networks are also the critical compo-
nents of many urban analytical methods. However, their graph representation is often
designed primarily for transportation purposes. This representation is less suitable for
other use cases where transportation networks need to be simplified as a mandatory pre-
processing step, e.g., in the case of morphological analysis, visual navigation, or drone
flight routing. While the urgent demand for automated pre-processing methods comes
from various fields, it is still an unsolved challenge. In this article, we tackle this challenge
by proposing a cheap computational heuristic for the identification of “face artifacts”, i.e.,
geometries that are enclosed by transportation edges but do not represent urban blocks.
The heuristic is based on combining the frequency distributions of shape compactness met-
rics and area measurements of street network face polygons. We test our method on 131
globally sampled large cities and show that it successfully identifies face artifacts in 89%
of analyzed cities. Our heuristic of detecting artifacts caused by data being collected for
another purpose is the first step towards an automated street network simplification work-
flow. Moreover, the proposed face artifact index uncovers differences in structural rules
guiding the development of cities in different world regions.

Keywords: street networks, network simplification, blocks, urban form, urban morphol-
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1 Introduction

Cities have been the object of human inquiry for thousands of years [55] and for a wide
range of scientific fields, such as growth dynamics, population development, and spatial
structure. Within the last 50 years, powered by the emergence of Big Data and computa-
tional power, data-driven approaches to the study of cities have gained unprecedented im-
portance [3]. For studies concerned with aspects of urban form, such as city structure [18],
place connectivity [17], accessibility [46], resilience of the built environment [51], and live-
ability [58], street network data has proven to be a particularly useful point of departure.
Street networks are line-based abstractions of the street space, containing information on
the connections between intersections and street segments. They are popular objects of
urban analyses due to their explanatory power, direct relationship to an extensive field
of graph theory, and simplicity (digitizing a street network is much easier than digitizing
buildings). The feasibility of studies that take street networks as a point of departure has
greatly increased with open source geospatial data becoming available on platforms like
OpenStreetMap (OSM) [42], allowing a wide range of applications [3], from transportation
network design [20], assessment of urban sprawl [7] or evolution and distribution of street
patterns [11, 12] to the classification of urban form [2, 23].

However, street network datasets vary significantly in their level of detail and data
quality [13, 32]. Whether a street network data set is fit for purpose depends to a large
extent on the specific application. A frequent data processing challenge, common to many
street network applications, is to reduce the level of detail from one use case (e.g. traffic
routing) to the other (e.g. morphological analysis) without losing relevant information or
introducing new imprecisions. For example, traffic routing applications require adequately
represented directionality of edges (street segments) [37], while studies on urban morphol-
ogy [16, 53] or on urban air space [5, 54] aim to reflect the space in between buildings and
its perceptional configuration and thus do not require the edges to be directed, and do not
want transportation geometries like roundabouts included. In such cases, manually decid-
ing which information to keep and which to aggregate is prohibitively time-consuming and
therefore not feasible at scale, while implementing an algorithm to automate this decision
is a challenging task (see Figure 1).

In short, when it comes to automated pre-processing methods for street network data,
demand from various fields is high, but supply is currently still low. Here, we take a first
step towards a fully automated street network simplification method by developing a com-
putationally cheap heuristic for the identification of “face artifacts”, i.e., polygons that are
enclosed by transportation network edges but do not represent urban blocks. As described
in detail below, face artifacts are a hindrance both for studies that are concerned with the
morphology of the street network itself and for studies that investigate the morphology of
urban blocks, commonly conceptualized as the polygons enclosed by the street network. We
therefore pose the following research question:

How can face artifacts in an urban street network be computationally identified?

In this article, we propose a method to answer this question, and test the proposed
method’s universality on case studies from across the globe. The rest of the paper is or-
ganized as follows: next, we provide a precise problem description, followed by a review
of previous work and terminology. We then introduce our methodology, proposing a cheap
computational heuristic that allows the automated identification of face artifacts based on
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Figure 1: a) Bridge, Amsterdam; b) Roundabout, Abidjan; c) Intersection, Kabul; d) Mo-
torway, Vienna. Polygons classified as face artifacts are shown in red, and the OSM street
network (without service roads) is shown in black. Face artifacts are polygons enclosed
by street network geometries (in the case of OSM, lane centerlines) that do not represent
morphological urban blocks, but instead are a result of detailed transportation-focused
mapping of the streetscape. Map data ©OpenStreetMap contributors ©CARTO

the geometric shape of areas enclosed by street edges. We apply the heuristic to 131 cities
across the globe, and present and evaluate the results. We conclude by discussing our con-
tribution and outlining potential further steps towards a fully automated street network
simplification method.

Problem description: Face artifacts

Each geospatially encoded street network comes with a certain level of detail and a focus on
specific elements of street space. While all attempt to capture primarily connectivity, which
is the primary purpose of streets, the resulting geometries and their graph representations
can vastly differ. On one hand, we have networks where every traffic lane and every inter-
section have been meticulously digitized with their respective attributes of directionality,
hierarchy, and speed limits; this type of graph representation is needed for routing appli-
cations [37, 50, 57]. On the other hand, we have networks that attempt to capture human
perception of space and certain aspects of navigation in a city, where detailed information
on intersection geometries usually makes little sense and is omitted [2, 6]. While each of
these graph representations has its own use cases, the former is more frequently available;
therefore, researchers often need to start from a detailed network and derive a simplified
one before starting an analysis. The difference between a transportation-focused and a
perception-focused network can be better understood by examining the areas enclosed by
network edges, which is a commonly used proxy for urban blocks [8, 24, 31, 52]. In graph
theory, the polygons enclosed by the network edges in a planar space are called (graph)
faces [14]. A detailed look at these face polygons for a given street network often reveals
artifacts of transport-focused geometry – polygons that do not capture urban blocks. Fig-
ure 1 illustrates this issue in OpenStreetMap, which is a widely used open source for global
street network data [30] with a transportation-focused mapping approach [41].
The face polygons colored in red are not urban blocks enclosed by streets; rather, they
appear in the network due to the representation of dual carriageways as separate network
edges (lane centerlines). This way of network representation is suitable for traffic routing
but can pose problems for other applications. When the goal is to generate polygons that
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are representative of urban blocks and at the same time to ensure that the graph represents
the morphological network rather than the transportation network, we suggest calling such
face polygons “face artifacts”, as they occur only as a result of the data preparation model
not suited for this goal.

Face artifacts pose a twofold problem. First, in studies concerned with urban form,
they introduce a false signal into the distribution of urban shapes and distort the polygon
representation of the actual urban blocks. Second, in studies concerned with the properties
and patterns of the street network, face artifacts introduce superfluous network edges, thus
distorting all network metrics based on node degree and/or shortest path computations. A
further aggravating factor is that the extent to which face artifacts distort results depends
on the analysis conducted and cannot be quantified without prior identification of such
polygons or superfluous edges. Thus, no matter whether one is interested in the topology
of the urban street network or the morphology of urban shapes enclosed by the network,
face artifacts might need to be removed as part of data preprocessing and replaced by sin-
gle network edges. Human manual identification of face artifacts would be unambiguous
but prohibitively costly, not scalable, and not entirely reproducible. Although many au-
thors have already pointed out this issue in a wide range of contexts (see section below), a
fully automatized approach to identifying and potentially removing face artifacts is, to our
knowledge, still non-existent.

Previous work

While face artifacts are a commonly known problem in the research community, there is a
lack of coherent terminology for the phenomenon. Previous studies have referred to the
same issue in widely varying terms, making it substantially more challenging to conduct a
comprehensive literature review.

Li et al. [34] point out the difficulties of extracting multilane roads from OSM that arise
from each lane being represented as a separate linestring (a linestring is a geometry object
representing a linear element such as a street edge following the Simple Features speci-
fication [40]). The authors propose a method to identify and merge face artifacts, which
they call “multilane polygons”, i.e., adjacent polygons covering a single street area result-
ing from mapping multiple street lanes, through a support vector machine (SVM) machine
learning algorithm that uses five shape parameters as input. While this method does suc-
ceed in identifying face artifacts at multilane roads, it is only reproducible by users with
advanced machine learning skills; furthermore, the method requires an input of manually
classified training data, which adds substantial effort.

Fan et al. [19] identify face artifacts, which they call “non-urban block polygons”, as a
data preprocessing issue in their study on feature matching between OSM and reference
data. The authors use the SVM approach developed by Li et al. [34] mentioned above to
identify face artifacts; they point out that the approach fails for smaller face artifacts at
traffic junctions.

In a similar use case but from a different field, Sanzana et al. [48] elaborate on the pro-
cess of deriving hydrological response units for drainage network flow modeling and find
that error correction is needed for “bad-shaped polygons”. The authors classify face arti-
facts, formed by roads and footpaths, as “sliver polygons”, a subcategory of “bad-shaped
polygons”. The authors further propose a method of polygon decomposition into smaller

www.josis.org

http://www.josis.org


A SHAPE-BASED HEURISTIC FOR THE DETECTION OF URBAN BLOCK ARTIFACTS 79

“well-shaped polygons”, which, however, cannot be conceptually transferred from hydro-
logical to street networks.

Grippa et al. [31] develop a workflow for land use classification on an urban block level.
The urban blocks are derived through polygonization of the OSM street network, which
however brings about some artifacts, as the authors point out by distingushing between
“urban blocks” (i.e., polygons correctly approximating urban blocks) and “sliver polygons”
(i.e., polygons that do not approximate urban blocks). Sliver polygons are detected based
on shape and size criteria, which are user-defined and not further specified or analyzed by
the authors. To remove the sliver polygons from the data set, a semi-automated workflow,
partially in PostGIS, is implemented.

Ludwig et al. [36] take up the approach by Grippa et al. [31], as described above,
within the context of urban green space identification from satellite imagery. So-called
“city blocks”, needed as units for the analysis, are derived through polygonization of the
combined OSM networks of streets, railways, and waterways. To identify “sliver poly-
gons”, the authors take up the approach by Grippa et al. [31], as described above, with an
additional threshold criterion of minimum area.

The study by Vybornova et al. [56] aims at identifying gaps in a network of bicycle
infrastructure, which is defined as a subgraph of the OSM street network. For estimating
network flow, the authors apply a shortest-path algorithm and point out that results are
partially distorted by “parallel edges”, i.e., the network edges at the boundaries of face
artifacts. The study presents a network shortest path-based approach for the identification
of parallel edges but no solution to effectively remove these from the network.

Lastly, a recent study by Shpuza [52] on the shape and size statistics of urban blocks
describes elongated urban blocks that are delimited either by a street or another type of
obstacle (e.g., a waterbody) and that contain no buildings, as “edge blocks”. The author
points out that edge blocks can be identified as outliers in a so-called “shape matrix” based
on two geometrical parameters: relative distance and directional fragmentation. However,
in this definition, edge blocks represent actual urban blocks rather than scattered parts of
the street space.

The studies cited above demonstrate that face artifacts present a real data preprocess-
ing challenge across a wide range of disciplines that work with street network data – from
hydrological flow modeling and satellite imagery-based land use classification to trans-
portation planning and urban morphology. However, no previous study has so far tackled
this issue systematically, which is also seen in the lack of a coherent terminology for this
common problem. In addition, the solutions found in the literature for face artifact identi-
fication are either not reproducible, not transferrable to other use cases, or not automated.

We conclude the literature review with a suggestion to consolidate the terminology. As
described above, some studies refer to face artifacts as “sliver polygons” [31, 36, 48]. How-
ever, these are two conceptually different terms since face artifacts arise as a consequence
of a context-dependent redundancy of mapped line features, while sliver polygons stem
from mismatching boundaries in vector overlays of polygon features [15,29,47]. The terms
“multilane polygons” [34] or “parallel edges” [56] do not reflect other transportation ge-
ometries causing the issue (e.g., complex intersections), while “bad-shaped polygons” [48]
is a vague term which does not refer back to the actual issue. We therefore suggest the
term “face artifact”, which is derived from graph theory and encodes both the origin (i.e.,
network polygonization) and the erroneous nature (i.e., an artifact in the context of street
network polygonization) of the polygon.
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2 Data and Method

The method proposed in this article is a simple, computationally cheap procedure designed
to capture both the artifacts resulting from dual carriageways and the artifacts resulting
from complex intersections, including roundabouts. To develop, validate, and evaluate
our method, we apply it to a data set of 131 cities randomly sampled from across the globe.
In the subsections below, we first describe the retrieval of the data set, and then each of
the methodological steps, which can be summarized as follows. First, the street network
is polygonized to retrieve face polygons; then, the polygons are characterized according
to their compactness and their area. Guided by the intuition that the distribution of ur-
ban block shape metrics has some universal properties, we combine both of these polygon
characteristics to derive a face artifact index, which allows us to distinguish between face
artifacts and actual urban blocks. We validate our method for face artifact identification
both visually and computationally. Lastly, we evaluate the outcomes for each compactness
metric to determine which compactness metric the face artifact index should be based on.

2.1 Data: 131 cities’ street networks from OpenStreetMap

The main goal of the method is to understand which components of a street network rep-
resentation designed for other than morphological purposes are forming face artifacts and,
hence, which edges need to be pre-processed prior to any analysis assuming morpholog-
ical representation. Therefore, we need to retrieve data digitized with transportation in
mind, like those available in OSM, which aims, among others, to include the level of detail
required for GPS navigation. At the same time, the method shall be independent of the
geographical context, and therefore, cannot depend on auxiliary data sources with limited
availability (e.g., cadastral data). For these reasons, in this study we use OSM street net-
work data for 131 cities sampled from six geographical areas (Africa, Asia, Europe, North
America, Oceania, South America), covering all urbanized continents. To avoid ambiguity
in the definition of a “city”, we use the definition of functional urban areas (FUAs) released
as part of the Global Human Settlement Layer (GHSL) [33, 49]. Given that smaller FUAs
may contain only a low number of street edges, we further limit the selection to FUAs with
at least 1 million inhabitants (as per GHSL data from 2015 released as part of the FUA layer).
Out of this subset, we randomly select 25 FUAs per continent. For Oceania, which contains
only six FUAs with more than 1 million inhabitants, all of these six are included in our
sample. The geographical distribution of the thus selected FUAs is illustrated in Figure 2,
with a complete list available in the Supplementary Material. The OSM data represents a
subset of data sources with similar structure, and we expect the method to work equally
on a wide range of other data sources with comparable structure (e.g., Overture Maps or
many municipal data sources).

2.2 Street network retrieval and generation of face polygons

For each of the selected FUAs, we retrieve the street network data intersecting its boundary
from OSM. We use only geometries with a highway tag and a filter based on OSM high-
way hierarchy (see Supplementary Material for details on the custom filter used), ensuring
we do not include sidewalks or service roads. Retrieved street geometries are further pro-
cessed using OSMnx [10] to derive a topologically correct undirected network, which is then
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Africa Asia Europe North America Oceania South America

Figure 2: Spatial distribution of FUAs selected to be used within this study color-coded
according to the (sub-)continent they lie on.

polygonized to retrieve face polygons enclosed from all sides by planar network edges and
representing either urban blocks or face artifacts.

2.3 Compactness metrics

The conceptual logic behind the face artifact identification is simple. Since street networks
are relatively predictable geometries with characteristic patterns and a limited number of
feasible configurations, we know that face artifacts are typically either large and highly
elongated polygons (resulting from dual carriageways) or small, highly compact polygons
of various rather compact shapes, often circular (e.g. roundabouts) or triangular (e.g. turn-
ing lanes on intersections); in other words, face artifacts have either a large area and low
compactness, or small area irrespective of compactness. Therefore, as will be shown below,
a shape index that captures the relationship between area and compactness of face artifacts
should have similar values for both face artifact types.

Compactness metrics, i.e., shape metrics that distinguish between compact and elon-
gated polygons, are well known in literature both within urban morphology [24] and
generic shape statistics [1]. Even though there is a large number of used metrics, they
are often only minor variations of the same formula leading to a linear relationship be-
tween them, as in the case of isoperimetric quotient in Altman [1] and form factor in Sanzana
et al. [48]). Some studies use the same formula under a different name, e.g., the radii index
in [21] and Schumm’s shape index in [38]. For the purposes of our study, we select a subset
of five compactness metrics (see Table 1) from the extensive set of those available in the
esda Python package [44] belonging to the Python Spatial Analytics Library (PySAL) fam-
ily [45]. The five compactness metrics differ in their formulae, but all five are dimensionless
ratios based on a comparison of an ideally compact shape (e.g., the equi-areal circle) and
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the actual shape of a polygon and are independent of the polygon’s area and orientation
in space. Note that due to the nature of their definitions, it is expected that some metrics
should show high degree of correlation.

Some of the metrics used in the related literature were excluded for conceptual reasons,
such as the convexity index used by Sanzana et al. [48], since long and narrow geometries
can be as convex as short and wide ones, or fractal dimension in Grippa et al. [31] since the
difference between urban blocks and face artifacts does not reside in their fractal dimen-
sions. Shpuza’s indices based on space syntax theory [52] are conceptually within the scope
of this research but have a level of complexity that does not fit our intention to propose a
simple and computationally cheap heuristic due to the number of steps needed to derive
a compactness metric for a polygon. Since the main benefit of this compactness index [52]
is its ability to take into account cul-de-sacs in the interior of the polygon, which by defini-
tion cannot form a face artifact, it is omitted from this comparison. Grippa et al. [31] do not
report formulae, so we can only assume how compactness metrics relative to a square and
to a circle were measured. A compactness metric presented in Louf and Barthelemy [35]
is equal to circular compactness (also known as minimum bounding circle ratio), first used by
Reock [43] and later by Frolov [25], and likely also to the circular compactness as used by
Grippa et al. [31]. Further, a metric presented as elongation in Gil et al. [27] is equal to the
diameter ratio presented earlier by Flaherty and Crumplin [21].

Compactness metric Ci Formula Reference Face artifact index Fi

Circular compactness Ccc
ag

ambc
[43] Fcc

Isoperimetric quotient Cipq
4πag

p2g
[1] Fipq

Isoareal quotient Ciaq

2π
√

ag

π

pg
[1] Fiaq

Radii ratio Crr

√
ag

π

rmbc
[21] Frr

Diameter ratio Cdr
wmrr

lmrr
[21] Fdr

Table 1: A selection of compactness metrics Ci tested within this study, where ag = area
of a polygon; ambc = area of minimum bounding circle of a polygon; pg = perimeter of a
polygon; rmbc = radius of a minimum bounding circle of a polygon; wmrr = width of a
minimum rotated rectangle of a polygon, where width is equal to the smaller dimension of
the rectangle; lmrr = length of a minimum rotated rectangle of a polygon, where length is
equal to the larger dimension of the rectangle.

2.4 Proposed heuristic: Face artifact index

For each face polygon p in every FUA, we compute its area and the compactness metric
Ci, p (where i denotes one of the five selected compactness metrics: circular compactness,
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isoperimetric quotient, isoareal quotient, radii ratio, and diameter ratio). Then, for each
compactness metric we derive a corresponding face artifact index Fi,p, that captures both a
polygon’s compactness and area:

Fi,p = log(Ci,p ∗ ap) (1)

The multiplication captures the relationship between the compactness and area, while loga-
rithmic scaling smoothens out the heavy-tailed distribution of the index caused by outliers
(mostly geometries with particularly large areas). Next, we observe the frequency distri-
butions ϕi = ϕ(Fi) of the five face artifact indices for each FUA. For the majority of the
analyzed FUAs and compactness metrics, the ϕi reveal a common feature of showing at
least two well-pronounced peaks, i.e., two prominent local maxima, as will be shown in
Figure 4.

Through visual analysis, we estimate that these peaks represent two different types of
polygons: most polygons within the first (leftmost) peak can be attributed to face artifacts
in the street network, whereas most polygons within the second (rightmost) peak represent
actual urban blocks. Therefore, for FUAs that show a pronounced two-peak pattern in their
ϕ(Fi) distribution, we define the face artifact index threshold Ti as the value of Fi correspond-
ing to the valley, i.e., the local minimum between the two peaks in the distribution ϕi. To
find the value of Ti for a given FUA, we approximate ϕi with a Gaussian kernel density
estimation (see Supplementary Material for specifications). Then, in order to account for
different urban forms that result in varying shapes of ϕ for different FUAs (some FUAs’ ϕi

distributions have more than two peaks), we formulate two conditions: (1) the face artifact
index distribution has at least two peaks; (2) the face artifact index distribution has at least
one valley. If both these conditions are fulfilled for a given FUA and a face artifact index
Fi, we define the face artifact index threshold Ti as the value of Fi at the location of the first
valley that lies between two peaks, one of which is the highest one:

Ti = Fi|ϕ′(Fi) = 0 ∧
ϕ′′(Fi) > 0 ∧

∃ Gi < Fi|(ϕ′(Gi) = 0 ∧ ϕ′′(Gi) < 0) ∧
∃ Hi > Fi|(ϕ′(Hi) = 0 ∧ ϕ′′(Hi) < 0) ∧

argmax(ϕ) ∈ [Gi, Hi]

(2)

We postulate that once we have computed, for a given FUA and a selected compactness
metric, both Fi,p and Ti, the face polygons can be easily classified into artifacts and urban
blocks. Polygons with a face artifact index below the threshold (Fi,p < Ti) will most likely
be face artifacts; polygons with a face artifact index at or above the threshold (Fi,p ≥ Ti)
will most likely be urban blocks.

In the next steps, we describe the methods used to check the validity of the proposed
heuristic and to evaluate which compactness metric is best used for face artifact detection.

2.5 Validation: Visual assessment and overlay with OSM building data

To validate our proposed heuristic and to assess whether the face artifact identification
actually yields satisfactory results, we conduct two validation steps. First, we validate our
method visually by generating plots of all face artifacts for each FUA where a face artifact
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index threshold could be identified. All plots can be found in the project repository archive
available from doi.org/10.5281/zenodo.8300729; Figure 5 shows four examples.

Next, we validate our method computationally using OSM building data. By our own
definition of face artifacts, these are part of the street network surface of a city and, there-
fore, should not contain any buildings – with minor exceptions, for example, when a bus
stop in the middle of a road is mapped out as a separate building, or when a road leads
underneath a building. Thus, from the perspective of face artifact identification, we can use
OSM building data to identify “false positives” – polygons that have been classified as face
artifacts by our method but contain (or overlap with) building footprints. Note that this is
the only corner of the confusion matrix for our face artifact identification heuristic that we
are able to estimate computationally in the absence of ground truth. Whether “negatives”
(polygons classified as urban blocks) are true (actual urban blocks) or false (wrongly classi-
fied face artifacts) cannot be evaluated through building footprints, since urban blocks may
or may not contain buildings. The same goes for “true positives” (correctly identified face
artifacts): we cannot estimate their number computationally since the absence of building
footprints is a necessary but not a sufficient condition for a face polygon to be classified as
face artifact.

Since the completeness of OSM building data is an ongoing object of study [9, 39] and
can vary greatly depending on the region, we first download and visually inspect OSM
building data sets for all FUAs. We discard FUAs with low coverage of mapped build-
ings and keep only FUAs with sufficiently complete OSM building data. Then, for each
FUA that has both a detected face artifact index threshold and sufficient building data, we
compute the overlap of face polygons and building footprint polygons. We then compute
the percentage of false positives, i.e., the percentage of face artifacts that contain up to X
square meters of building footprints, letting X vary between 0 and 100 m2 to account for
building overlap exceptions described above (see Figure 6).

2.6 Evaluation of compactness metrics

Next, we aim to select one out of the five analyzed compactness metrics, based on which the
face artifact index threshold shall be computed. To this end, we compare the performance
of compactness metrics Ci listed in table 1 based on their ability to detect face artifacts and
on their computational efficiency. An overview of all evaluation steps is shown in Figure 8.

The ability to detect a threshold Ti that divides face polygons into artifacts and urban
blocks is the most critical aspect of the proposed heuristic. The first evaluation step there-
fore captures the percentage of successfully detected Ti for each compactness metric Ci.
It is assumed that the variation in distributions among metrics will result in differences
reflecting the quality of each metric.

The second evaluation computes the peak prominence of the face artifact index thresh-
old, i.e., the vertical distance between the valley (corresponding to Ti) and the peak to
its left in the distribution ϕi. This metric captures how easy it is to derive the threshold
from the distribution itself, depending on which compactness metric Ci the computation is
based on.

Next, we evaluate the computational efficiency, as we believe that the lower the usage
barriers of a method, the higher its value for the scientific community. Computational
efficiency is one potential usage barrier, excluding researchers with limited access to high-
performance computing infrastructure. We therefore benchmark the single-threaded per-
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formance of each metric on a random sample of 10000 polygons taken from the pool of all
FUAs. The implementation of all compactness metrics in the esda package relies on the
vectorized geometry engine of a shapely 2 [28] wrapping around the GEOS library [26],
ensuring minimal processing overhead. The benchmark is run on an Intel Xeon W-2245
3.9GHz CPU, repeating the same measurement 100 times.

The fourth and last evaluation step is based on the validation with OSM building data
and looks at the percentage of “false positives”, i.e., the percentage of polygons that have
been identified as face polygons but contain buildings. The false positives have been com-
puted only for those FUAs where OSM building data are sufficiently complete; therefore
this evaluation step has fewer data points.

3 Results

Below, we summarize the results for each of the methodological steps, described in detail in
Section 2). Detailed results can be found in the project repository archive doi.org/10.5281/
zenodo.8300730.

Using the sample of 131 FUAs, we were able to retrieve a total of 3440838 face polygons,
with 25% in North America, 23% in South America, 16% in Europe, 14% in Africa and 13%
and 7% in Asia and Oceania respectively, and a mean number of over 26000 polygons per
FUA. That leaves us with a large amount of data ensuring a certain level of robustness and
sampling bias reduction.

3.1 Compactness metrics

As expected, there is a strong relationship between the individual compactness metrics
as shown in Figure 3. The Pearson correlation coefficient ranges from 0.735 between the
isoareal quotient and the diameter ratio to 0.987 between the isoperimetric quotient and the
isoareal quotient. The latter is due to a non-linear relationship between the two metrics,
evident both in Figure 3 and in Spearman’s rank correlation coefficient of 1.0. Other pairs of
metrics clearly capture similar shape characteristics but do not have a direct (linear or non-
linear relationship). We can therefore assume that all five compactness metrics should be
able to detect face artifacts in a similar manner, though likely with a different performance.
This assumption is confirmed once we take a look at the distributions ϕi, as shown in
Figure 4 for five different cities: all face artifact indices Fi appear to yield similar two-peak
patterns of ϕi, though the peak prominence and exact curve shape vary depending on the
compactness metric used.

3.2 Validation

The visual validation step provides a first insight into the success of our method. We gen-
erate separate plots of face artifacts for each FUA where a face artifact threshold could be
identified (see doi.org/10.5281/zenodo.8300730) and note that almost all of them clearly
align with street network patterns, as can be seen in Figure 5. The only clear outlier is
Mogadishu (Somalia), where entire areas of the city have been wrongly marked as face
artifacts by our method – notably the districts of Shibis and Karan, which are characterized
by a dense rectangular street pattern with a typical grid cell length of around 30 m. The
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Figure 3: Pairwise scatter plots and histograms of five shape metrics for a combined sample
of all 131 FUAs. The diagonal plots show the distribution of each metric, while the off-
diagonal plots show the correlation between the two metrics. Each scatter plot contains a
value of Pearson correlation coefficient (ρ) and of Spearman’s rank correlation coefficient
(rs) for a specific pair.
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Figure 4: Face artifact index distributions for different compactness metrics and cities. In
the columns, from left to right: circular compactness; isoperimetric quotient; isoareal quo-
tient; radii ratio; diameter ratio. In the rows, from top to bottom: a) Cochabamba (Bolivia);
b) Douala (Cameroon); c) Sydney (Australia); d) Tbilisi (Georgia); e) Montreal (Canada).
Peaks are highlighted with black dots; valleys with red dots. The dashed red vertical line
shows the position of the identified face artifact index threshold Ti for the given compact-
ness metric and city.
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corresponding face artifact index distribution suggests that the threshold should be set to
the first valley (and not the one to the left of the highest peak) in order to obtain better
results.

Figure 5: Birdview plots of detected face artifacts (red polygons) within each FUA bor-
der (black lines) for one city per each continent, clockwise from top left: Wuhan (China,
Asia), Khartoum (Sudan, Africa), São Paulo (Brazil, South America), Moscow (Russia,
Europe), Perth (Australia, Oceania), and Montreal (Canada, North America). doi.org/
10.5281/zenodo.8300730.

The computational validation step also shows satisfactory results. As seen in panel b)
of Figure 6, for the threshold based on circular compactness and with an area threshold
of 10 m2, for most FUAs the rate of false positives lies between 2.5 and 4.5%. In other
words, for most FUAs, only 2.5−4.5% of detected face artifacts overlap with OSM building
data, while the overwhelming majority of face artifacts (95.5 − 97.5%) overlap with no
building footprints or with a negligible extent (≤ 10 m2) of building footprints. Figure 6
further shows that we get comparable results for face artifact index thresholds based on
other compactness metrics.

Figure 7 shows the relationship between polygon compactness and area for all face
polygons within the FUA of Raleigh (USA). The plot distinguishes between identified ur-
ban blocks (blue), identified face artifacts with no building overlap (yellow) and identified
face artifacts with building overlap, i.e., false positives (pink). The distribution visually in-
dicates two large clusters, one representing face artifacts and the other one capturing urban
blocks. However, it is to be noted that while the area where the threshold lies is sparsely
occupied, there is no clear-cut boundary between the polygon groups, at least not visually.
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Figure 6: Validating the heuristic with OSM building data

3.3 Evaluation

After confirming that our heuristic is indeed able to identify face artifacts, we need to de-
cide which of the five compactness metrics Ci to settle on. To evaluate the compactness
metrics, we look at four aspects: percentage of FUAs with an identified threshold; com-
putational efficiency; peak prominence; and percentage of false positives (see Section 2 for
details).

As illustrated in panel a) of Figure 6, the face artifact index based on circular com-
pactness could identify the greatest number of thresholds, namely in 117 out of 131 FUAs
(89%). The least number of thresholds was identified by the face artifact indices based on
isoareal quotient and radii ratio, with 77 (58%) and 83 (63%) identified FUA thresholds,
respectively. The face artifact indices based on isoperimetric quotient and diameter ratio
both detected a threshold in 109 cases (83%), though not the same set. It is worth noting
that even the face artifact index based on circular compactness does not capture all FUA
thresholds captured by the other indices. For example, the threshold for Ibadan (Nigeria),
not found by the former, is indeed identified by three other face artifact indices (based on
isoperimetric quotient, radii ratio, and isoareal quotient). Furthermore, the face artifact
index based on diameter ratio allowed the identification of thresholds in three additional
cases: Dhaka (Bangladesh), Jombang (Indonesia), and Recife (Brazil). Neither one of the
compactness metrics, therefore, seems to be universally superior to the others. However,
for the particular sample of 131 FUAs used in this study, circular compactness wins in
absolute numbers of identified thresholds.

Analyzing the peak prominence for each of the shape metrics tells a similar story as
the evaluation of detected thresholds above, but with a few differences. The metric with
the highest peak prominence is the face artifact index based on the isoperimetric quotient,
closely followed by the circular compactness, both with a mean of 0.32. The face artifact
index based on the isoareal quotient shows the least prominent peaks, with a mean value
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Figure 7: A scatter plot of individual polygons based on their area and circular compact-
ness, with individual groups highlighted based on the result of the face artifact detection
method and its validation. The panel (a) reflects a zoomed-in version of the bottom left
corner of the full figure in panel (b).
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of 0.28. However, the overall differences in peak prominence do not appear to be large,
with all of the distributions following roughly the same shape leading to similar distances
between their peaks and valleys; no one metric can therefore be singled out in contrast to
the others.

Results from the computational performance benchmark, tested on 10000 randomly
sampled polygons, are plotted in the third panel of Figure 8. Our heuristic is indeed com-
putationally cheap (as intended) since even the slowest metric takes only an average of
147 ms. This translates into a nearly negligible approximate processing time of 400 ms
per average-sized FUA. When comparing the face artifact indices against each other, there
are notable differences in computational speed: Fiaq and Fipq , the two fastest metrics, are
more than 10 times faster than Fcc and Frr, probably due to the fact that the latter requires
computation of minimum bounding circles. From the perspective of computational perfor-
mance, Fcc seems to be the worst available option in comparison to the other face artifact
indices; however, given how computationally cheap the heuristic is even for Fcc, this eval-
uation step seems to be relevant only for much larger data sets than the one used in this
study. When using the GEOS-based implementation either directly in C++ or through ef-
ficient bindings (shapely in Python, sf or terra in R, or PostGIS in PostgreSQL) for
a data set in the order of the one used in this study, it should therefore not matter which
shape metric is used from a perspective of computational performance.

We compute the percentage of false positives for four different area threshold values of
Xϵ{0, 10, 50, 100}[m2] and compare the results for all five face artifact indices Fi. The over-
all percentage of false positives is decreasing with an increasing X (as was to be expected),
but is reasonably low even for the strict requirement of X = 0, i.e., for the case in which any
amount of overlap with the OSM building data set leads to an identified face polygon to
be classified as “false positive”. Similarly to the previous evaluation steps, comparing the
percentage of false positives by face artifact index Fi does not indicate any clear winner.
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4 Discussion

Unlike previous attempts based on complex machine learning algorithms [19, 34], neither
of which is easily reproducible, the method proposed in this study is a simple heuristic
based on properties of individual geometries. Our method is computationally cheap, trans-
ferrable, and easy to reproduce and replicate. By leveraging the characteristic patterns in
urban street networks and their geometric representation, the face artifact index proposed
in this study manages to capture both types of face artifacts, i.e., the elongated polygons
between dual carriageways as well as small polygons of various shapes resulting from
complex intersections, with a single metric and a single threshold.

There is no clear indication as to which compactness metric the face artifact index
should be best based on – rather, this will depend on the use case and on the data set
available. The performance of Fiaq and Fipq suggest that they should not be used but the
decision on the remaining metrics is not that clear. For the data set we worked with in this
study, where the primary goal was to identify face artifact index thresholds in as many as
possible of 131 cities, the best choice is Fcc, i.e., the face artifact index based on circular
compactness. However, for several cities in our data set, Fdr would have been the better
choice. Thus, we maintain the formula for Fi,p introduced in Equation 1 in general terms,
where the compactness metric Ci has to be chosen at the analyst’s discretion.

However, there are also some shortcomings of our method. In 11% of cases, the ϕi

distribution does not follow a two-peak pattern and the threshold heuristic is not appli-
cable. While that may mean that there are no face artifacts in the whole FUA, that is not
very likely. We have observed varying percentages of artifacts within FUAs depending on
their geographical location, reflecting differences in cultural background and the way it is
translated into the urban structure. However, there are likely at least some polygons that
can be considered artifacts. Cases with a low percentage of artifacts will remain without
a detected threshold. It is possible that a threshold derived at a geographically close loca-
tion will be applicable in these cases, but we recommend proceeding with caution when
applying an externally computed threshold to a study area.

A low number of artifacts can be caused not only by the lack of physical objects of a
transportation origin, but also by the quality of data. OSM, which was used to retrieve all
the street network geometries, has a very high coverage of the world when it comes to the
geometries with a “highway” tag (consisting not only of highways but also other drivable
or walkable linear elements like roads and paths). Unfortunately, the same cannot be said
about the quality of the data. When there is a complex intersection, roundabout, or dual
carriageway on the ground, its representation in OSM data may significantly differ from a
detailed drawing in one case and only a single node in the other. Naturally, the latter case
does not produce any face artifacts, while the former can create several face artifacts in one
single location.

The nature of the distribution with two local maxima required for the detection of Ti

comes with another limitation. In the ideal situation, we can conceptually split the dis-
tribution into two Gaussian distributions, one capturing the face artifact index of artifact
poylgons and the other capturing the face artifact index of actual urban block polygons,
as illustrated in Figure 9. Their two tails overlap, leading to both false positive and false
negative classification of polygons as artifacts (also illustrated by Figure 7). We have seen
in Figure 8 that the issue of false positives is relatively low, the median value ranging from
2-4% depending on the selected compactness metric, but there is no straightforward way
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Figure 9: Conceptual illustration of the composition of ϕ consisting of two overlapping
Gaussian distributions and resulting identification of false positives and false negatives
when relying on T .

of quantifying false negatives. However, if we accept the conceptualization based on two
normal distributions, we can assume that the number of false negatives is even lower than
the number of false positives.

Figure 10: KDEs of the face artifact index in individual FUAs grouped by the (sub)continent
(a-f); a combined plot of all the distributions (g) and a box plot showcasing the differences
in the value of Tcc across geographical locations (h). Each distribution plot also includes a
rug plot of locations of individual Tcc values in red.
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Due to the design of urban road systems, contiguous artifacts often capture roads of a
higher hierarchy, and their presence (or a lack thereof) reflects differences between design
principles applied to cities in different parts of the world. These differences are clearly
visible in the location of thresholds and the overall distributions of the face artifact index,
as illustrated in Figure 10. While many distributions across all (sub)continents show a sim-
ilar bimodal pattern, there are notable differences in the peak prominence and locations
of the peaks and valleys. The most prominent thresholds are found in North American
and Australian cities, most likely due to the prevalent car-oriented urban design that gen-
erates a large number of face artifacts as a byproduct. Asian cities seem to be divided
into two subgroups, where the first one tends to have the first peak more prominent than
the second, contrary to all the other cases. These distributions reflect street networks of
large Chinese cities like Wuhan (illustrated in Figure 5a), Guangzhou or Chongqing, char-
acterised by large-scale expansions with a highly car-oriented transport model in the last
50 years. These expansions lead to a large number of multiple-lane roads and complex
intersections, causing an amount of face artifacts that exceeds the number of urban blocks.
On the other side of this spectrum is the lowest peak prominence visible in African cities,
likely due to a combination of less developed motorized transportation infrastructure com-
pared to Chinese or North American cities, and a less precise mapping of such elements in
OpenStreetMap. These differences also show in the ability to detect Tcc values in different
regions, with Asia and Africa reaching the lowest value of 76%, while in the rest of the
world the method succeeds in detecting Tcc in 96% (South America, Europe) or even 100%
(North America, Oceania) of cases.

When focusing on the absolute values of Tcc, illustrated in Figure 10h, we can observe
clearly differing trends for different continents. The exception, once again, are Chinese
cities, which are more similar to North American cities than to other Asian ones. Given
that the compactness component of Fcc takes on values between 0 and 1, the main rea-
son for these shifts is the size of the artifacts, where a higher Tcc reflects generally larger
face artifacts. As illustrated in Figure 7, those are very elongated polygons, formed by
large segments of dual carriageways. A lower Tcc is often linked to a smaller number of
highways, as we observe in the our sample of cities in Africa, South America, and Asia
(except China). In contrast, places with strongly developed road infrastructure, such as
Oceania (Australia), North America, and China, report higher Tcc. However, even while
there are differences, the overall distributions are shifted only in a few percent of the extent,
as shown Figure 7g.

We call for future work to focus on the second part of the pursuit towards automatized
simplification and transformation of street networks. Now that face artifacts can be com-
putationally identified, the next step will be to develop an algorithm that can eliminate and
appropriately replace face artifacts.

In addition, the face artifact detection results are worth exploring on their own as they
uncover structural differences between selected FUAs. The value of T differs across loca-
tions; the shape of ϕ does not always resemble a bimodal distribution as shown in Figure 9,
and even when it does, the locations of peaks and the spread of distributions differ. The
more profound exploration of regularities and irregularities in these results in connection
with the geographical location may uncover higher-level principles guiding the develop-
ment of global urban networks.

Every geospatial dataset is collected with a specific purpose in mind, which affects what
is being captured, in which detail, where, and how. Nevertheless, the original purpose may
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not be the only one for which the dataset is potentially useful. Other use cases may arise,
and with them, a need to adapt the data to fit the new purpose. In those cases, we need
methods and processes allowing us to detect what needs to be changed and (ideally) to
automatically adapt the input to the desired output. In the case of street networks captured
with transportation in mind, the transformation process cannot be fully automated yet, but
we believe that the method presented in this article provides an important step toward this
goal.

Data and code availability

The whole method is encapsulated in a series of Jupyter notebooks executed in a container-
ized environment darribas/gds_py:9.0 [4], ensuring full reproducibility. All compo-
nents of the work rely on open source software and open data, with the resulting code
and data being openly available at https://github.com/martinfleis/urban-block-artifacts
and archived at doi.org/10.5281/zenodo.8300730. The face artifact functionality has been
contributed to the open source package momepy [22], focusing on the analysis of urban
morphology.
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Supplementary Material

4.1 List of analyzed FUAs

25 sample FUAs in Africa: Abidjan (CIV); Abuja (NGA); Accra (GHA); Addis Ababa
(ETH); Agadir (MAR); Al-Zaqaziq (EGY); Amaigbo (NGA); Cape Town (ZAF); Conakry
(GIN); Douala (CMR); Fez (MAR); Ibadan (NGA); Kananga (COD); Khartoum (SDN);
Maiduguri (NGA); Mogadishu (SOM); Mombasa (KEN); Monrovia (LBR); N’Djamena
(TCD); Niamey (NER); Oran (DZA); Ouagadougou (BFA); Tanta (EGY); Tripoli (LBY); Tunis
(TUN).

25 sample FUAs in Asia: Abbottabad (PAK); Agra (IND); Aleppo (SYR); Basra (IRQ);
Chongqing (CHN); Comilla (BGD); Dhaka (BGD); Gonda (IND); Guangzhou (CHN); Jaipur
(IND); Jombang (IDN); Kabul (AFG); Karachi (PAK); Lucknow (IND); Luohe (CHN); Man-
dalay (MMR); Nantong (CHN); Qinhuangdao (CHN); Semarang (IDN); Seoul (KOR); Tbil-
isi (GEO); Weifang (CHN); Wuhan (CHN); Xingtai (CHN); Yongkang (CHN).

25 sample FUAs in Europe: Amsterdam (NLD); Athens (GRC); Barcelona (ESP); Belgrade
(SRB); Cardiff (GBR); Chelyabinsk (RUS); Cologne (DEU); Dortmund (DEU); Glasgow
(GBR); Helsinki (FIN); Katowice (POL); Krakow (POL); Kyiv (UKR); Leeds (GBR); Lis-
bon (PRT); Liège (BEL); London (GBR); Moscow (RUS); Nuremberg (DEU); Saratov (RUS);
Seville (ESP); Sofia (BGR); Vienna (AUT); Voronezh (RUS); Warsaw (POL).

25 sample FUAs in North America: Cincinnati (USA); Dallas (USA); Guatemala City
(GTM); Kansas City (USA); Las Vegas (USA); Managua (NIC); Montreal (CAN); Orlando
(USA); Ottawa (CAN); Philadelphia (USA); Pittsburgh (USA); Raleigh (USA); Richmond
(USA); Río Piedras [San Juan] (PRI); Sacramento (USA); Salt Lake City (USA); San Jose
(USA); San Salvador (SLV); St. Louis (USA); Tegucigalpa (HND); Tijuana (USA); Toluca
(MEX); Torreon (MEX); Vancouver (CAN); Washington D.C. (USA).

6 sample FUAs in Oceania: Adelaide (AUS); Auckland (NZL); Brisbane (AUS); Melbourne
(AUS); Perth (AUS); Sydney (AUS).

25 sample FUAs in South America: Belo Horizonte (BRA); Belém (BRA); Bucaramanga
(COL); Buenos Aires (ARG); Cali (COL); Cochabamba (BOL); Curitiba (BRA); Lima (PER);
Maceió (BRA); Manaus (BRA); Maracaibo (VEN); Maracay (VEN); Medellín (COL); Men-
doza (ARG); Natal (BRA); Porto Alegre (BRA); Quito (ECU); Recife (BRA); Rosario (ARG);
Salvador (BRA); Santiago (CHL); Santos (BRA); São Luís (BRA); São Paulo (BRA); Valencia
(VEN).

OSM query for street network data

The custom filter used for the OSM query for street network data is as follows:

custom_filter = ’["highway"~"living_street|motorway|motorway_link|
pedestrian|primary|primary_link|residential|secondary|
secondary_link|service|tertiary|tertiary_link|trunk|trunk_link
|unclassified"]’

Note that all streets with highway=service are filtered out at a later step, and that the
network that is polygonized does not contain any service roads.
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Technical specifications for peak/valley finding

We fit a Gaussian kernel density estimation (KDE), using the parametric Silverman method
for bandwidth selection. Then, we look for local maxima (peaks) and local minima (valleys)
in the KDE with the following parameters: no minimum or maximum height for local
minima; minimum height for local maxima set to 0.0008 to exclude noise; no maximum
height for local maxima; and a minimum peak prominence of 0.00075.

Pearson correlation coefficients between tested shape metrics

circular
compactness

isoperimetric
quotient

isoareal
quotient

radii ratio diameter
ratio

circular compactness 1.000 0.938 0.903 0.979 0.874
isoperimetric quotient 0.938 1.000 0.987 0.958 0.765
isoareal quotient 0.903 0.987 1.000 0.952 0.735
radii ratio 0.979 0.958 0.952 1.000 0.858
diameter ratio 0.874 0.765 0.735 0.858 1.000

Table 2: Pearson correlation coefficients between tested shape metrics.

Spearman correlation coefficients between tested shape metrics

circular
compactness

isoperimetric
quotient

isoareal
quotient

radii ratio diameter
ratio

circular compactness 1.000 0.952 0.952 1.000 0.872
isoperimetric quotient 0.952 1.000 1.000 0.952 0.785
isoareal quotient 0.952 1.000 1.000 0.952 0.785
radii ratio 1.000 0.952 0.952 1.000 0.872
diameter ratio 0.872 0.785 0.785 0.872 1.000

Table 3: Spearman correlation coefficients between tested shape metrics.
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