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Abstract: Transformations are essential for dealing with geographic information. They
are involved not only in the conversion between geodata formats and reference systems,
but also in turning geodata into useful information according to some purpose. However,
since a transformation can be implemented in various formats and tools, its function and
purpose usually remains hidden underneath the technicalities of a workflow. To automate
geographic information procedures, we therefore need to model the transformations imple-
mented by workflows on a conceptual level, as a form of procedural knowledge. Although
core concepts of spatial information provide a useful level of description in this respect, we
currently lack a model for the space of possible transformations between such concepts.
In this article, we present the algebra of core concept transformations (CCT). It consists of
a type hierarchy which models core concepts as relation types, and a set of basic trans-
formations described in terms of function signatures that use such types. We enrich GIS
workflows with abstract machine-readable metadata, by compiling algebraic tool descrip-
tions and inferring goal concepts across a workflow. In this article, we show how such
procedural metadata can be used to retrieve workflows based on task descriptions derived
from geo-analytical questions. Transformations can be queried independently from their
implementations or data formats.
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1 Introduction

Manipulating and processing geographic information is a core competence relevant for
data analysts. It is not only needed for transforming maps across different coordinate ref-
erence systems, it is also an essential means for transforming geodata in ways that allow
performing particular analytical tasks to answer questions [58]. For example, to learn about
the effect of noise on the health of citizens [65], we may need to transform a noise contour
map (Fig. 1a) into a statistical summary that quantifies the amount of noise within admin-
istrative regions. Using appropriate tools, we can derive a choropleth map showing the
proportion of the area covered by 70dB noise for each neighborhood (Fig. 1b) from this contour
map.

(a) Map of noise contours in Amsterdam. Source: [3]

(b) Choropleth map of proportion of area covered by noise > 70 dB on the level of neighborhoods.

Figure 1: Transformation of noise contour map into a choropleth map.

As we illustrate below, the contour and the choropleth map in the example above corre-
spond not only to different computational or cartographic steps, but also to different forms
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of geographic information, i.e., having different underlying conceptualizations. We therefore
call such manipulations conceptual transformations. In this article, we are interested in un-
derstanding how such transformations can be chosen according to the purpose given by
some geo-analytical task. What kind of procedural knowledge is needed to understand trans-
formations, i.e., to understand why a tool can be picked for transforming the contour map
into a map that measures the intended proportions?

Today, it seems that, although we have textbooks explaining geo-analytical methods
in detail [19] and workflow management has become standard practice in Geographic In-
formation Systems (GIS), we cannot claim to understand this workflow design practice
very well [40]—at least not well enough for automating it [35]. In the past, we have seen
attempts at annotating GIS operations and services with semantic descriptions to make
them reusable and interoperable, in particular in the form of Web services [30, 46, 48, 51].
Also, understanding GIS in terms of transformations has been suggested earlier [33]. How-
ever, while corresponding technologies are important enablers for (partial) automation,
describing and systematizing GIS functionality needed in these services turned out to be
hard [10, 11, 40]. A useful theory that links GIS tools with tasks seems still out of sight [54].
We believe this is at least partially due to a lack of understanding of the know-how required
for handling transformations on a conceptual level. In the past, researchers have focused
on tool technicalities in a raster or vector format, needed for implementation of, but insuffi-
cient for, reasoning with GIS [44, 57]. Although geocomputational workflows are necessar-
ily implemented in some geometric format, their design and selection requires reasoning
beyond geodata models and geometries.

Figure 2: How to transform a noise contour map into a measure of the proportion of noisy
area? The dotted transformations are on a conceptual level, in parallel to computational pro-
cedures implemented with different data models (blue: vector version, red: raster version).
Procedures are schematized versions of ArcGIS workflows from task 1b in Sect. 5.

To highlight this point, consider again our example from above. Analytically, the im-
portant feature of the noise contour map is not that it is in vector format, nor that noise
values are given as integers, but that the data can be interpreted as a spatial field, i.e., a
spatially continuous function of noise measures, as opposed to a collection of discrete ob-
jects. Aggregations therefore cannot be counts, but should be field integrals or field coverage
proportions. For the latter, we are measuring the area covered by a range of field values (≥
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70 dB) within the extent of objects (neighborhoods) (cf. dotted boxes in Fig. 2), and then
form an area proportion. Note that this holds regardless of whether such an operation, in
turn, is implemented in terms of raster (zonal map algebra) or vector overlay (combining
e.g. intersect and dissolve) (cf. schematized workflows in Fig. 2). Since the same task can be
implemented by different workflows in different formats, neither data nor tool formats provide
a basis for understanding the function and purpose of these workflows. Correspondingly, scripts
may be enough for executing, but are neither sufficient for synthesizing nor for retrieving
such a workflow [53].

A spatial field is an example of a core concept of spatial information [43]. Core concepts
capture the various ways in which the geographic environment can be conceptualized.
Together with concepts of measurement, they have recently been successfully used as a
basis not only to deconstruct geographic questions [67], but also as semantic data types
for GIS functions [57] and for GIS workflow synthesis [42]. Since the well known geodata
types do not capture such concepts [50], we need a higher layer of abstraction to describe
and retrieve geo-analytical workflows. In particular, we lack models that capture the space
of conceptual transformations over entire workflows and across different implementations.
Such a model would make not only the automated composition, but also the description
and retrieval of workflows independent from their implementation. This enables linking
automated GIS workflow synthesis on the one hand [42] to descriptions of geo-analytical
tasks derived from questions [67] on the other hand, which we both addressed in the cited
previous work (see Fig. 3). Eventually, this allows us to automate GIS tasks for the purpose
of geo-analytical question-answering1.

In this article, we introduce the algebra of core concept transformations (CCT), a conceptual
interface linking geo-analytical tasks to workflow implementations (Fig. 3). It can be used
to automatically infer conceptual descriptions of entire workflows from tool descriptions,
in order to retrieve workflows based on how they transform concepts into one another.
This addresses part of the challenge of geo-analytical question-answering [53, 58], namely the
subproblem of matching tasks to workflows. That is, we assume that, through external
processes, we already have potential workflows to match, and can derive task descriptions
from geo-analytical questions. We have published on these problems independently, in
[42,55] and [67] respectively. Furthermore, we leave the execution of the workflows wholly
out of scope.

Our transformation algebra is based on relational types, which present a novel way of
modeling geographic information concepts. Concepts are represented as parameterized
types that can be transformed into each other, which is an innovation over previous on-
tologies of core concepts [44, 56, 57]. Relation types can represent measurements with one
control (e.g. object height) or multiple (e.g. network distance). Using type inference, we
propagate type information through a given workflow. Furthermore, we generalize over
data formats and implementations. For example, a spatial field may be implemented in
raster as well as in vector format. In the algebra, a field occurs simply as a measurement at
arbitrary locations.

In what follows, we first discuss previous work on conceptual and algebraic models
of GIS (Sect. 2), before outlining our methodology for designing and testing the algebra
(Sect. 3). We then explain how core concepts can be modeled as types of relations (Sect. 4).
We then introduce 11 empirical workflow scenarios for evaluating our model in Sect. 5 and

1Geo-analytical QA is defined as the problem of matching questions with GIS workflows that generate answer
maps [58].
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Figure 3: Role of the transformation algebra as an intermediate layer for specifying geo-
analytical tasks and for retrieving workflows in geo-analytical question-answering.

specify underlying tasks using conceptual types. In Sect. 6, we explain how such types can
be used to describe the functionality of tools and workflows. For this purpose, we specify
geo-analytical transformations as function signatures in Sect. 7. Finally, we test our model
using a retrieval study over expert workflows taken from the scenarios (Sect. 8).

2 Related work

We review related work on algebraic and conceptual models of GIS tasks and workflows.

2.1 Modelling GIS services

Our work is situated in the context of describing geo-operators [12] for automating the
composition of geoprocessing services [47]. For example, [46] suggested integrating se-
mantic and syntactic signatures to describe geo-operations on the Web using Semantic Web
service principles [28]. [30] used Datalog rules to specify the functionality by input and out-
put types for geoprocessing services. Such service descriptions may then be combined to a
geoprocessing web [69] or for workflow development [40]. However, service descriptions
usually focus on syntactic or semantic labels of inputs or outputs of tools [12]. This is re-
quired for service composition, yet it is insufficient for interoperability and for retrieval of
services [54], since purposes, functionality and applicability constraints can be represented
only to a limited extent [56]. Part of the reason is that describing GIS functionality on this
level remains hard [11], since it is not independent from software implementations.

2.2 GIS and algebra

The idea of using algebras to describe GIS functionality on a conceptual level goes back to
Dana Tomlin’s map algebra [62]. Since the latter captures only a small part of GIS function-
ality closely related to the raster data model, there have been various attempts at extending
it (cf. [49]). Other researchers have focused on functional algebras as more general mod-
els to design or implement GIS [31,32]. Algebras were developed specifically for modeling
fields [13,29] and for GIS operations in relational databases [37]. However, such approaches
focused on generalized data models for implementing software, not on conceptual models for
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generalizing over functionality. More recent approaches therefore used functional languages
centered around core concepts [44], see below. Our algebra builds on the preliminary ideas
in [53, 56, 57], but differs in the following respects:

First, unlike other approaches, we are not targeting implementations, since core con-
cepts are not data types but conceptual models [43]. Focus on implementation details
may have prevented success of earlier attempts at systematizing GIS operations precisely
when overlooking these concepts [10]. Conceptual transformations, in contrast, remain rel-
atively stable across different implementations. Fields, e.g., should not be treated as a data
type [13], but as a concept that can have raster and vector implementations, as suggested
in [57].

Second, we use our algebra as an annotation and reasoning language for tools and
workflows, primarily for the purpose of retrieval and question-answering, in addition to syn-
thesis (cf. [42]). To the best of our knowledge, this has not been done previously. Going
beyond [56], our type system accommodates a form of subsumption reasoning with param-
eterized types which allows succinct, abstract descriptions of atomic transformations. So
far, such type systems have been mainly used for type checking programming languages,
not for semantic annotations for retrieval or question-answering purposes.

Third, in contrast to [56], concepts are not modeled as functions, but rather as relations in
the sense of relational algebra [17], while functions stand for concept transformations. This
makes it easy to distinguish transformations from concepts. Furthermore, we can handle
partial and inverted fields as well as spatial networks all in terms of relational concepts [55],
as explained below. All this allows us to effectively propagate conceptual types through
workflows for the purpose of retrieval, as envisioned in [53].

2.3 Concepts for interpreting spatial information

Which kinds of concepts are required for modeling transformations of spatial information?
Here, we give a short review of and justification for such concepts.

2.3.1 Core concepts

Core concepts of spatial information were proposed by [43–45] as generic interfaces to GIS
in the sense of conceptual ‘lenses’ through which the environment can be studied. Core
concepts are results of human conceptualization and interpretation and are thus usually
not explicit in data types. For our purpose, we make use of the following concepts:

• Fields: Fields capture qualities [45] at locations of some metric space and at some
time. A prime example is a temperature field. Since field values are separated by
spatial distance, one can study change as a function of spatial distance. Though field
qualities also change in time, we consider only spatial fields, i.e., snapshots of a field
in time [56].

• Objects: Spatial objects are ‘endurants’ [34], meaning they can change their location
and quality in time while remaining their identity. Objects are spatially bounded
even if their boundary may be fuzzy. We consider geographic places with bona fide
(perceivable) and fiat (conventional) boundaries as objects.

• Networks: Networks measure some relationship between objects [45, 55], e.g., com-
muter flows between cities or traffic links between intersections in a road network.
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The measured quality can thereby change in time. Similar to objects, we also con-
sider locations as keys of a network relation (cf. relational fields) [55]. Examples are
Euclidean distance (a ratio scaled relation between locations) or the visibility relation
in a digital terrain model (a Boolean relation between locations).

For the current version of the algebra, we excluded the event concept, because we con-
sider only static scenarios, for which events can be reinterpreted as objects. In addition,
note that all concepts discussed above have an intrinsic temporal dimension (objects move,
fields and networks change in time, and events have a beginning and an end), which is
out of scope in the current version of our algebra. It can be added in the future simply by
adding another value type for temporal domains of measurement, which can then be used
in corresponding relations, cf. Sect. 4.

2.3.2 Amounts and measurement levels

Since our algebra focuses on transformations, we furthermore need to consider how core
concepts can be quantified. For this purpose, we use the concepts of amounts and measure-
ment levels in addition to core concepts.

We use ‘amount’ here in a technical sense, to signify extensive quantities with a mereolog-
ical (part-whole) structure that allows forming sums and which can be measured on a linear
scale [63]. They correspond to well known geographic operations (cf. [15]). For example, an
amount of space (a region) can be partitioned and summed into regions, all of which can be
measured in terms of size. An amount of objects can be partitioned into subsets and can be
measured by counting, or by summing up their qualities. An amount of moisture content
is measured by integrating (summing up) a moisture field. We distinguish two principal
types of amount measurement: Content amounts involve measurements of amounts formed
by controlling space and measuring its content (e.g., number of objects (e.g. households)
or integral of a field (e.g. precipitation) within a defined region)2. Coverage amounts are
formed by controlling content (e.g. collections of objects or field values) and measuring
(the size of) the spatial regions covered3 (cf. [15, 63]). Examples would be the area covered
by roads in a city, or the area covered by a certain type of vegetation.

Finally, such measurements of core concepts and of geographic amounts can be on dif-
ferent levels of measurement [15]; cf. [61]. These comprise classes of measurement scales that
preserve certain operational characteristics, such as (in ascending order of complexity):
equality (nominal level), ordering (ordinal level), differences (interval level), ratios (ratio
level), as well as counts (results of countings, where values are integers) [15]. Since the
operations of less complex classes of scales apply also to more complex ones (e.g., equality
can be distinguished also among ordinal levels), the latter are treated as subclasses of the
former.

2.3.3 Some notes on the relevance of these concepts

One may ask why the level of core concepts, measurement levels and amounts should be con-
sidered adequate for modeling spatial information, and not more specific domain concepts,

2In [63], this corresponds to magnitudes of amounts formed by capacity measurements, i.e., measurements that
control for space and measure content.

3In [63], these are magnitudes of amounts formed by occupancy measurements, i.e., measurements that control
for content and measure its spatial extent.
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such as noise or humidity, or well established data types such as raster or vector [66]. The
reason is that they all correspond to different levels of knowledge, with different purposes.
While knowledge of meteorology is required for answering questions about weather and
climate, it actually plays a limited role in handling cartographic principles. In contrast,
we know that the knowledge captured by core concepts (cf. [43]), amounts [63], and mea-
surement levels [15] is necessary for interpreting maps and for solving geo-computational
tasks, regardless of the represented domain [44, 54]. To understand the role of these con-
cepts, it should be noted that they are not covered by current geodata types, and that they
are part of recent theories which are still under development [44, 57, 63]). The algebraic
model proposed in this article is beneficial primarily because it demonstrates how these
theoretical concepts can be used to model workflow transformations. Note, however, that
spatial information cannot be fully understood without additional concepts like spatial res-
olution or accuracy, which capture aspects of data quality and uncertainty [43], or without
domain specific categories, such as noise or humidity. Although the former are required to
implement a workflow, and the latter to select data for it, such details are rarely relevant
when deciding whether a workflow is in principle relevant for a purpose, or whether it can
answer a given question. Such concepts are therefore out of scope of the current article.
Furthermore, executing a workflow usually requires computational parameters, but we
leave them out of consideration because we focus on modeling the intended functionality
(cf. [57]).

2.4 Type inference

The usefulness of types in programming lies in information hiding, a way of assuring com-
patibility while abstracting from implementation details [38]. For example, type constraints
allow us to check that a function can be applied without knowing all the details of the in-
put. Furthermore, the ability to combine and to infer types in an automated fashion (via
subtyping or type parameters) is useful to handle the functional variability of GIS oper-
ations [15] and to account for information provenance. For instance, we do not have to
determine output types a priori, but we can infer such types based on input types using
some algebraic expression that describes a workflow’s functionality.

Type inference is a common feature of programming languages to perform static checks
of implementations [41]. In this work, we instead use it to infer conceptual knowledge. The
use of type inference in knowledge bases is not new—in fact, the Web Ontology Language
(OWL) facilitates a form of it. [9] However, we use an independent type inference module
to access features like type variables. To our knowledge, this idea has not been applied to
produce workflow metadata before.

3 Methodology

3.1 Requirements and approach

To serve as a model for conceptual transformations and their purposes, our algebra needs
to be:

• Implementation-free. This means it needs to generalize over different algorithmic real-
izations of GIS methods, such as different implementations of spatial interpolation.
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The primitives of our algebra therefore should be implementation free, similar to Com-
putational Independent Models (CIM) in software engineering [36].

• Functionally universal and precise. The algebra needs to be universal enough to cover
functionality that can occur in a workflow in practice, and at the same time precise
enough to distinguish workflows that are suitable for a task from those that are not.

To meet these requirements, we combine the idea of core concepts with two technical
approaches: For one, our operators’ signatures represent higher-order functions so as to ex-
press operations in terms of other operations (cf. [56]). Since the algebra does not concern
itself with implementation, powerful type inference features, including subtype- and para-
metric polymorphism, can be incorporated without the complexity of providing a concrete
procedure with the same level of generality. This allows us to handle a large variety of
possible transformations with only a limited set of primitives. The other idea is relational
algebra [17], which provides a general model for interpreting core concepts in terms of types
of relations. We will justify each of these ideas below.

3.2 Overview

Figure 4: Terminology used in the paper. The transformation algebra models concepts and
their transformations (dotted boxes), and is used to describe tasks and implementations.
CCT is a particular vocabulary using the algebra syntax. Thick arrows denote dependen-
cies, thin arrows denote implementation or modeling relations.

Fig. 4 gives an overview of the terminology used in the following. The methodological
approach is shown in Fig. 5. The algebra was developed initially based on 12 GIS tasks
selected from GIS student exercises over several development cycles. By a GIS task, we
mean a question concrete enough to be answered by a GIS workflow, such as: ‘What is the
average distance of buildings in Utrecht to the nearest hospital?’.
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Figure 5: Flowchart of methods used in this article. The dotted arrows indicate feedback in
the development cycle.

When we reached a first stable version, we formally specified a type model of core con-
cepts based on relational algebra (Sect. 4). We then used this model to specify type signa-
tures for algebraic operators which represent atomic conceptual transformations (Sect. 7),
and which can be composed to derive more complex transformations that describe GIS
functionality. Operators were incrementally extended throughout the work.

To serve as empirical basis for evaluation of the algebra, we collected 11 analytical sce-
narios from online tutorials and GIS courses. Since the knowledge required to solve geo-
analytical problems is not fully specified in a task, it requires expert knowledge for in-
terpreting it in terms of transformations. Since this knowledge is tacit, it is not readily
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available as data and needs to be infused into the learning process [58, 59]. Online GIS
tutorials are a useful source for acquiring such knowledge, since they were created as a
learning source based on procedural knowledge. For this purpose, we selected scenarios
that covered diverse types of GIS analysis tasks from introductory GIS courses and tutori-
als.

We first manually described the underlying analytic task for each scenario in terms of
a directed acyclic graph between concept types, based on the task documentation (Sect. 5).
We call this graph a task transformation graph and, for brevity, we will sometimes refer to it
as simply the task.

For each task, we then implemented one or more GIS workflows following the tutorial
descriptions. A GIS workflow is a ‘blueprint’ for performing manipulations on data in
a geographic information system. It can be represented as a directed acyclic graph with
nodes that represent either data artefacts or applications of GIS tools. We have encoded
this in the RDF format [8] (Sect. 6.1). In what follows, these graphs are what we will refer
to simply as workflows. All these steps were developed in an iterative manner over multiple
development cycles.

All GIS tools occurring in the workflows were then described using transformation ex-
pressions (Sect. 6.1). We developed a type inference system for the algebra (Sect. 6.2). This
system allows us to compute the type of each step in the conceptual transformation that is
implemented by a workflow, by propagating type information through each operator.

By composing the transformations of individual tools into full workflows, we show that
we obtain type-correct transformation graphs and thus that tool combinations imagined by
workflow authors are foreseen in our algebra model. We then evaluate these workflows by
performing retrieval tests using task transformation graphs (Sect. 8). The retrieval tests as-
sess to what extent the conceptual transformations underlying geo-analytic tasks match the
types in the workflow, and whether they are distinctive enough to pick a valid workflow
for a given task. A large scale evaluation on more workflows is still future work.

4 Types

In this section, we show how core concepts of geographic information, amounts and their
measurements can be modeled as types of relations.

4.1 Why relation types?

As explained in Sect. 2, core concepts relate different domains of measurement: fields re-
late locations to measurements of qualities, objects relate their measured qualities with the
spatial regions they occupy, and networks relate pairs of objects (or locations) to measured
qualities. Following Sinton [60], in GIS and more generally in measurement, measuring
amounts implies that we control for other amounts [63]. For example, amounts of space
(regions) control the amounts of population they contain, and a particular amount of noise
can be used to control the space occupied by it. Finally, such measurements can be con-
sidered on different levels. To express the complexity of controlling and measuring such
forms of spatial information, a hierarchy of relation types is thus well suited. Controls
then become key attributes in corresponding relations, as we will detail in the following.
Although the idea of representing and manipulating information in terms of relations is
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borrowed from relational algebra [16,17], its formal underpinnings are not essential for our
current purposes. Where we recap relational algebra, we do so only to build an intuition for
the conceptual types. In earlier work, we modeled fields as partial functions [56], but in this
paper, we make a clear distinction between the conceptualization of static computational
results (modeled as relation types) and computational steps (modeled as function types).
Furthermore, we dismiss the idea that our types stand for particular data structures, such as
a database table. They are rather means of conceptualizing and manipulating geographic
information, and thus generalize over implemented data structures.

4.2 Values of measurement

A measurement or observation in GIS yields a value. These have a type, which is simply the
domain of values belonging to that type. Our class of value types, ∆Val, consists of the types
of spatial objects Obj, which are represented by object names; locations Loc, represented by
coordinate tuples; and quality values of measurement systems Qlt. The latter is further
subdivided into a hierarchy of measurement levels, including the types of nominal (Nom),
ordinal (Ord), interval (Itv), ratio (Ratio), count (Count) and Boolean (Bool) values. The type
hierarchy implies that every measurement on a ratio level is also on an interval level. For
example, measurement of noise in decibels is at the same time also on an ordinal level,
because decibel measurements can be ordered. Finally, we call the overarching type of
values Val.

∆Val = {Obj, Loc,Qlt,Count,Ratio, Itv,Ord,Nom,Bool} ,

Val =
⋃

∆Val,

Count ⊂ Ratio ⊂ Itv ⊂ Ord ⊂ Nom ⊂ Qlt,

Bool ⊂ Nom.

4.3 A relational model of spatial information

Our notion of a relation is similar to an ‘abstract’ database table: each element assigns a
value to each of a set of attributes, as in relational algebra [16]. Despite the name, these
relations do not coincide exactly with set-theoretical relations, because some attributes are
key, in that each combination of values for those attributes must be unique.

While we will not further examine the contents of any specific relation, we do consider
types of relations. To this end, we introduce the type operator R. This operator is parameter-
ized by two types: the first for the key attribute and the second for the dependent attribute.
It is defined as the set of those relations in which the values draw from corresponding
types. For example, R(Loc, Itv) is the set of relations that uniquely associate locations with
interval-scaled values. Note that a parameter of R may itself also be a relation type. The
class of relation types is ∆R.

We also introduce the product type α1 × · · · × αn, representing the type of tuples in
which the value at index i is drawn from the type αi. The product type can be used to
characterize relations with multiple attributes, as in R(Obj× Obj, Itv).
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The type hierarchy on value types induces a partial order on relation types, too, since
sets of relations subset each other if their attribute types subset each other. For example,
because Itv ⊆ Qlt, we also have R(Obj× Obj, Itv) ⊆ R(Obj× Obj, Qlt).

Finally, we write ε for the unit type, which has only a single value, namely, the empty
tuple (i.e. ε = {〈〉}). This type can be used in case we want to speak about relations that
have only key attributes: then the independent attributes can use the empty tuple as a
dummy value.

Collections The simplest kind of relation is called a collection. A collection is a relation
with only a single attribute, which is also the key. This can be thought of simply as a subset
of values of the type of its key attribute. For example, R(Obj, ε) is the type of collections of
objects. We write C(Obj) as shorthand. Furthermore, we use Reg, which stands for spatial
regions like points, lines and areas, as a shorthand for C(Loc).

Simple relations Simple relations have a single key attribute which uniquely identifies an
entry, and the other attribute is the only independent one. We call these types ‘simple’
because a single key serves as an index for the other attribute. This allows us to define con-
cepts which combine values from more than one domain in order to refer to characteristics
of some phenomenon. These relations can serve as a model for particular core concepts of
spatial information:

• Spatial fields and location fields R(Loc, Qlt) are interpreted here as relations controlling
quality values by locations, e.g., a temperature field. A variant is a location field
R(Loc, Loc), which is a field that controls locations by (neighboring) locations, e.g.,
when measuring drainage directions.

• Inverted fields and coverage amounts R(Qlt, Reg) map quality values into regions that
are covered by this value, e.g. landuse coverages or contour regions. In both cases,
regions are controlled by quality values, but not vice versa (e.g., the region covered
by more than 70 dB noise). The sizes of such a coverage are represented by the relation
type R(Qlt, Ratio).

• Object extents R(Obj, Reg) and object qualities R(Obj, Qlt) are, respectively, relations of
object values and their regions or quality values (denoting the space that the object,
e.g. a house, occupies and the value of one of its qualities, e.g. its height).

• Field sample and content amount relations R(Reg, Qlt) denote either point-wise samples
of a field, or content amounts which summarize values over some region. Content
amounts are expressed by relations that have regions as keys and amount measures
as value. For example, the number of buildings within the boundaries of an arbitrary
region is represented by the type R(Reg, Count). A pointwise sample of precipitation
would be modeled by R(Reg, Ratio).

Composite relations Composite relations have two keys and a single dependent attribute.
This allows us to talk about relationships between concepts, and to measure some character-
istics of these relationships. In particular, we draw attention to quantified relations, in which
the dependent attribute is a quality. They also have an interpretation as core concepts:
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• R(Obj× Obj, Qlt) captures the idea that a spatial network is a quantified relation be-
tween spatial objects. For example, the network might measure the amount of flow
between pairs of cities, or it might capture information about whether a pair of train
stations is connected by some train line (the latter being a boolean spatial network).

• The same idea can also be applied to locations as key pairs, as in R(Loc× Loc, Qlt).
We call these concept types relational fields. A relational field quantifies relationships
between locations. An example would be Euclidean distance. Another example, using
Boolean quality values, would be visibility: is some location visible from another?

Simple relations with multiple attributes Finally, we have relations with a single key
attribute and multiple independent attributes, for representing multiple characteristics of a
single thing. For example, for representing a type that captures both footprint and height
of buildings, we use the type R(Obj, Reg × Ratio). This reflects GIS layers with several
attributes.

The fact that a data source or tool is associated with more than one attribute is inci-
dental, as is the way in which they are bundled. We are dealing with concepts, not data
structures, and so we could just as well have reversed the order of the dependent attributes,
or used a tuple of simple relations. Ideally, the type parameter for the dependent attributes
should not be a product but an intersection, so that order is irrelevant and so that R(x, y ∩ z)
is a supertype of R(x, y) and R(x, z). While this should be addressed in a future version, it
does not currently lead to problems, because we adhere to a consistent way of annotating
tools.

Simple example of a conceptual transformation To illustrate the use of our types for
describing conceptual transformations, take again the example from Fig. 1. The first step is
to convert the contour map (which is an ordinally scaled coverage amount, since attributes
denote interval ranges and polygons denote the area covered by these ranges) into a field.
This would correspond to a transformation from R(Ord, Reg) to R(Loc, Ord). This transfor-
mation may, for example, be implemented by the PolygonToRaster tool. [7]

5 Scenarios

Our analytic tasks are selected from GIS expert tutorials that are used to showcase the
functionality of GIS software and from GIS introductory courses. Thus, we can assume that
the underlying practices and workflows are suitable for constructing a standard benchmark
of geo-analytical tasks. We collected 11 documented workflow scenarios as an empirical
basis for testing, taken from course material of a GIS minor [4], and from ESRI’s ArcGIS
online learning hub [6] and similar online tutorials. Scenarios are thematically diverse,
complex and specific enough to be of practical relevance for GIS analysts. For all online
coursework, corresponding tutorials can be found under the indicated web resources.

5.1 Task transformation graphs

We manually interpreted each scenario in terms of the underlying task, by providing a
task transformation graph. This is a directed acyclic graph with CCT types as nodes, with
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edges between them indicating that one type is (directly or indirectly) derived from an-
other. They capture the high-level concept types and transformations inherent to the task
itself, disregarding any tool that could be used to fulfill it. As such, they might capture
only some important conceptual steps, glossing over steps that would be annotated in the
transformation graph for the workflow that implements it. In the remainder, we will refer
to task transformation graphs as simply tasks.

Sensible task transformation graphs can be automatically derived from a (subset of)
natural language questions, but doing so is a subproblem that we addressed in other ar-
ticles [67]. In this section, instead, we manually construct transformation graphs for each
problem and explain why we expect suitable workflows to conform to it.

Additionally, we implemented one or two ArcGIS workflows for each scenario by fol-
lowing the tutorials and modifying them for different possible approaches. Machine-
readable task transformation graphs and details of the workflows are available at the
CCT repository at https://github.com/quangis/cct/tree/article1, under the tasks/ and
workflows/ directories, respectively. The repository has additionally been archived at
10.6084/m9.figshare.19688712.

We will illustrate two scenarios, along with their task and associated workflows. Due to
space constraints, the explanations of the remaining nine have been moved to Appendix A.

Scenarios 1a and 1b: Noise

What is the proportion of noise ≥ 70dB in Amsterdam? [4]
The task is to quantify traffic noise in Amsterdam. This scenario has two subscenarios.

In the simplest one, NoisePortion, the noise contour map in Fig. 1a needs to be transformed
into the area covered by noise ≥ 70dB. Alternatively, in the NoiseProportion variant, we nor-
malize this area, e.g., by the area of objects, generating the proportion of the area covered
by 70dB noise within each neighborhood.

For NoisePortion, we generate the coverage of noise (A) from some ordinal field (B)
which was generated from a noise field (D) that was constrained to the spatial region of
Amsterdam (C) and which originates from a noise contour map (E) (the latter with ordi-
nally scaled noise intervals).

A R(Ord, Reg)B R(Loc, Ord)

C R(Obj, Reg×Nom)

D R(Loc, Ord)E R(Ord, Reg)

For the NoiseProportion case, we generate a ratio scaled quality of neighborhoods (G and
F), a proportion, of the sizes of neighborhood regions (H) and the sizes of the ordinal fields
(D) within these neighbourhoods (I), originating from a noise contour map (E).

F R(Obj, Reg×Ratio)G R(Obj, Ratio)

H R(Obj, Ratio)C R(Obj, Reg×Nom)

I R(Obj, Ratio)D R(Loc, Ord)E R(Ord, Reg)
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(a) Computing noise proportion using Raster GIS (NOISEPROPORTIONRASTER).

(b) Computing noise proportion using Vector GIS (NOISEPROPORTIONVECTOR).

Figure 6: Different ArcGIS workflows for implementing scenario 1b (computing noise pro-
portion) using noise contours and municipalities as input (blue). Input/output types from
tool annotations are added as labels for illustration purposes. Polygons circumscribe su-
pertools (cf. Sect.6) .
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The NOISEPORTION implementation rasterizes the contour map, clips the raster to the
spatial extent of the municipal polygon of Amsterdam, constrains the cell values (≥ 70)
using local map algebra, and converts the constrained raster layer into a vector polygon.

There are different raster and vector solutions that implement NoiseProportion, as de-
picted in Fig. 6. NOISEPROPORTIONRASTER is the raster version based on local and zonal
map algebra operations. Here, a local map algebra tool (Raster Calculator) is used to constrain
the noise field to 70 dB. Zonal Statistics is used to aggregate this field into the municipality
polygon, the size of which is measured with Add Geometry Attributes. Note how the func-
tionality of some tools is described on an aggregated level (supertool). Overlay (Intersect)
and Dissolve can be used in combination to do an equivalent thing for vector data, which
yields another workflow for the same task (NOISEPROPORTIONVECTOR).

Scenario 9: Floods

What is the stream runoff during a predicted rainstorm in Vermont, US? [27]
In this scenario, we estimate a unit hydrograph in order to predict floods in a catch-

ment area. A unit hydrograph is a relation of areas draining within a given time interval,
obtained using a digital elevation model within the catchment area. Conceptually, this cor-
responds to generating a drainage time (isochrone) field from a height field, and inverting it into a
coverage of the area draining within a given time interval: from a terrain model D we derive a
quantified (drainage time) relation between locations (C), which is minimized with respect
to closest location in the region E of some pour point object (F). The resulting drainage
time field (B) is classified into ordinal time intervals. Inverting this field yields (G) and
measuring the area covered by each time interval yields the unit hydrograph (A).

A R(Ord, Ratio)G R(Ord, Reg)B R(Loc, Ratio)

C R(Loc×Loc, Ratio)D R(Loc, Itv)

E R(Nom, Reg)F R(Obj, Reg×Nom)

The entire FLOODS workflow is implemented using various map algebra operations on
raster maps.

6 Conceptual workflow description

There are various levels at which a scientific workflow could be described semantically,
such as by their tool names and internal and external data types [35]. In previous work on
automated workflow synthesis in GIS, [42] we distinguished tools from their applications
in workflow graphs on the one hand, and from their semantic signatures on the other hand.
Automatic synthesis is then possible based on different semantic and syntactic input and
output types that a tool can have. Workflow composition can be automated for various
kinds of GIS software [55].

However, in the current article, we focus instead only on selecting such synthesized
workflows for a given task. For this purpose, we need to be explicit regarding a workflow’s
functionality to transform concepts, while data types and tool names can be disregarded.
Correspondingly, algebraic descriptions are not used for performing the underlying task,
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but for describing it in such a way that the produced metadata can be used for workflow
retrieval. In this section, we show how we combine geo-analytical operators (cf. Sect. 7)
into workflow transformation graphs.

6.1 Workflow transformation graphs

Geo-analytical questions contain conceptual information about what needs to be done; GIS
workflows contain implementation details about how to do it. They are speaking about
the same problem, but using different vocabularies. Whereas task transformation graphs
capture the concepts underlying questions, workflow transformation graphs provide a con-
ceptual look inside a workflow. This exposes a common layer, which makes it possible to
match the former against the latter.

The GIS workflows of Sect. 5 are represented as graphs with data artefacts and appli-
cations of GIS tools as nodes. These GIS tools refer roughly to ArcGIS Pro or QGIS tools,
which have been manually annotated with a transformation expression, which describes the
underlying conceptual transformation. These expressions are then stitched together into
workflow transformation graphs to describe full workflows. The conceptual type at each
step in the graph is automatically inferred.

The annotations are available in the tools/ directory of the CCT repository. Note,
however, that actual software tools and the tool nodes we use do not correspond to each
other 1-to-1. This is for the following reasons:

• A given tool might be interpreted into several variants of conceptual transformation,
corresponding to its internal function and parameterizations. This should not be con-
fused with simply having a polymorphic type: whether a hammer is used to drive
a nail into plywood or into a tree, the operation has the same purpose or function,
though the type of result may differ. If it is used to break a plank instead, the function
is a different one. For example, the zonal statistics tool might aggregate the size of
the area covered by a raster ZonalStatisticsSize, but may also use average to aggre-
gate over raster values (ZonalStatisticsMeanRatio), as well as fields or objects for zone
definitions. All of these choices correspond to different conceptual transformations.

• Semantic descriptions were sometimes lifted to the level of supertools, standing for
sub-workflows that can only be meaningfully interpreted into a core concept transfor-
mation as a whole. For example, the supertool IntersectDissolve stands for a combina-
tion of the Intersect and Dissolve tools. This implements the functionality of Intersect-
DissolveField2Object, which aggregates some vector representation of a field into some
object quality. Comparing the algebraic description of this tool with ZonalStatistics-
Size, it can be seen that it implements an identical core concept transformation, even
though both tools are implemented on different data types and in various pieces of
software.

This illustrates that tool implementations do not necessarily align with conceptualiza-
tions of their function, which can be handled by separating semantic from technical tool
descriptions.
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6.2 Type inference

A transformation expression should provide rich descriptions of the tools used in a work-
flow, capturing the underlying functionality in detail. At the same time, it should be suc-
cinct, composed of a limited number of general operators.

Although the full meaning of atomic operators is not formally specified, they do have
an intended reading and a type signature. For example, an operator for adding a value of
type t to a collection of values of type t would have a signature t → C(t) → C(t). This
constrains its input, which can be enforced by using the type inference algorithm as a type
checker, so that some nonsensical transformations are rejected.

Moreover, the operators may generalize over various concepts. Therefore, they are poly-
morphic, in that they may apply to values of more than one type, and higher-order, in that
transformations may be described in terms of other transformations. The concrete types
produced by a particular application are only calculated in the context of the whole trans-
formation graph.

We have implemented the algorithm as a stand-alone Python module. The code is freely
available and documented at https://github.com/quangis/transforge. This approach al-
lows for flexibility for our atypical use case: it needs to be integrated with knowledge
graphs and embedded in a broader ecosystem for workflow synthesis. The algorithm
is inspired by [64] for the implementation of type parameters and subtyping, while type
constraints were added ad-hoc to allow for a form of functional dependencies (details in
Appendix C).

In this article, we do not study the formal correctness of the algorithm via proofs of
termination or soundness and completeness. Such information is of interest to computer
scientists and provides valuable guarantees for using the system in the wild, but it is non-
trivial and does not affect the experimental results in this paper. After all, our experiments
show that the inference process does correctly terminate for our limited collection of expert-
annotated tools. Under the constraints of our empirical domain, general considerations
become less important (cf. [39]).

Nevertheless, it is worthwhile to point out that there are type systems with subtyping
that have been proven terminating and correct, like [52] and the aforementioned [64]. Such
proofs also exist (with some caveats) for systems that support functional dependencies [20].
This is far from a guarantee that the simultaneous support for these features also enjoys
decidability (or, indeed, that our particular implementation has no bugs). We consider it
future work to establish this by formal analysis, or, preferably, fitting our machinery with
a well-investigated algorithm that has the appropriate features.

Subtype polymorphism The symbol : means ‘of type’ in our operator signatures and
expressions. Since a type is a domain to which a value or relation belongs, if a ∈ α, then
a : α. Therefore, we immediately obtain a type hierarchy that mirrors subset relations.
Because Count ⊂ Ratio, for example, we have that x : Count implies x : Ratio.

Our algorithm accommodates subtype polymorphism in the sense that an operator of type
α → β will also accept any input of type α− such that α− ⊆ α, and will produce a value of
any type β+ such that β ⊆ β+. The most specific possible type is selected.

Parametric polymorphism and functional dependencies However, to define transfor-
mations that work on multiple types that are not merely subtypes of each other, we addi-
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tionally accommodate parametric polymorphism. That is to say: signatures may contain type
variables.

Such a schematic type may be further bounded by a typeclass. Because types are not
associated with specific behaviour, there is no need to specify a typeclass beyond the set of
types it comprises. It also implicitly accommodates a form of functional dependencies: if we
know that R(α, β) is bounded by a typeclass that comprises {R(Obj, Count),R(Reg, Ratio)},
then once we find out that α ⊆ Obj, we can immediately conclude that β ⊆ Count.

For a schematic type α→ β in which α is bound by the typeclass C, we write α ∈ C =⇒
α→ β.

6.3 Workflows as transformations

The transformation expression for the SelectLayerByObjectTessObjects tool is given below as
an example. This tool is the first step in the NOISEPORTION workflow, selecting neighbour-
hoods of Amsterdam.

subset (− : C(Obj)) (1 : R(Obj, Reg × Nom))

In this expression, the tool’s first and only input, denoted 1, which must be a subtype
of R(Obj, Reg × Nom), is subset by some other collection of objects C(Obj). While this other
collection is a conceptual input to the operator, it is not associated with a concrete input to
the tool, because it is only implicitly inserted by the author of the workflow. Therefore, it is
left unspecified and denoted −.

We will learn in Sect. 7 that the subset operator has type C(x) → R(k, v) → R(k, v)
where x occurs in k or v. With this knowledge, we can infer the output type of this specific
application of the operation, and, in turn, of the tool. For example, if input 1 has type
R(Obj, Reg × Count), the output must be a value of that type too. Moreover, if its input has
an incongruent type, like R(Loc, Obj), we can immediately reject it.

A transformation expression can be represented as a tree. By connecting the trees for
every tool application in a workflow, and running type inference alongside, we synthesize
the transformation graph for an entire workflow.

Figure 7 illustrates the resulting transformation graph for the NOISEPORTION work-
flow. We will describe the meaning of these operators in the next section.

7 Geo-analytical transformations

We specify geo-analytical transformations in terms of the operators introduced in this sec-
tion. We give an overview of most essential operators in order to illustrate the range of GIS
functionality that can be captured with them. Familiar functional and relational operators
can be found in Appendix B. However, to understand our general approach, it is not essen-
tial to understand the particularities of each. In this article, we used them only to produce
types; they have no other content.4

4The operators themselves could be used as semantic markers in the tasks. It is also possible to give them a
‘body’, by assigning a lambda term to operators so as to define some operators in terms of others. We chose not
to do so in this article. See discussion for more information.
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Figure 7: Simplified procedural annotations for the NOISEPORTION workflow.

Neighbourhoods polygon

Noise contour

SelectLayerByObjectTessObjects

ContourToFieldRaster

LocalMapAlgebraSubOrder

RegionFromRasterExtent

ClipFieldRaster2ObjectExtent

R(Obj, Reg×Nom)

R(Ord, Reg)

C(Obj)

R(Obj, Reg×Nom) via subset

R(Loc, Ord) via revert

Bool via eq

R(Loc, Ord) via select

Ord

R(Ord, Reg) via nest2

C(Loc) via fcover

Reg via reify

C(Ord) via pi2

Ord via name

C(Ord) via pi2

R(Loc, Ord) via subset

R(Obj, Reg) via get_attrL

C(Obj) via pi1

Reg via ocover

C(Loc) via deify

R(Obj, Reg) via get_attrL
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Moreover, operators are subject to continuous revision. While the operators are suffi-
cient for describing the functionality needed for the workflow scenarios, they are expected
to be updated or modified in the future.5

Keep in mind that an expression describes transformations on a conceptual level, that
is, in the mind of an analyst guiding computational procedures. Consequently, the opera-
tors generalize over data types like Raster and Vector, and they may be used to describe a
diversity of tools and implementations. Conversely, the operators allow for many ways in
which a single tool can be described. We nevertheless expect that pertinent concepts will
show up in any sensible description of a tool.

All operators in this section have a machine-readable counterpart in the cct.py file in
the CCT repository.

7.1 Transformations of geo-analytic values

Value derivations

objectify : Nom → Obj nominalize : Obj → Nom

leq : Ord → Ord → Bool eq : Val → Val → Bool

and : Bool → Bool → Bool not : Bool → Bool

ratio, product : Ratio → Ratio → Ratio classify : Itv → Ord

objectify and nominalize convert between object identifiers and names. classify provides
a way to reclassify interval scaled values to ordinal classes, a typical GIS operation imple-
mented in reclassification tables. The other operators have obvious meanings (with eq for
equality and leq for less-than-or-equal).

Aggregations of collections

count : C(Obj) → Count size : C(Loc) → Ratio

merge : C(Reg) → Reg name : C(Nom) → Nom

centroid : C(Loc) → Loc

These are operations that aggregate collections, with straightforward meanings, such
as the centroid of a collection of locations. name can be used to grant a single name to a
collection of landuse types, or to a collection topological relation values.

Statistical summaries

avg : R(Val, Itv) → Itv min : R(Val, Ord) → Ord

sum : R(Val, Ratio) → Ratio max : R(Val, Ord) → Ord

Note that these operations are on simple relations, not collections, since in order to
capture the concept of a statistical distribution, we need to be able to control values by other
values. For example, temperature measurements can be controlled by different locations.

5Because atomic operations have no content beyond their name and type signature, there are infinite ways to
pick them. An operator do_something with a catch-all type would be ‘correct’, but certainly not specific enough
to allow us to distinguish workflows.
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7.2 Geometric transformations
Constructors for composite relations

lDist : C(Loc) → C(Loc) → R(Loc × Loc, Ratio)

lTopo : C(Loc) → Reg → R(Loc × Reg, Nom)

loDist : C(Loc) → R(Obj, Reg) → R(Loc × Obj, Ratio)

oDist : R(Obj, Reg) → R(Obj, Reg) → R(Obj × Obj, Ratio)

loTopo : C(Loc) → R(Obj, Reg) → R(Loc × Obj, Nom)

oTopo : R(Obj, Reg) → R(Obj, Reg) → R(Obj × Obj, Nom)

We start with operations to construct composite relations. lDist generates distance rela-
tions between locations, and lTopo generates topological relations between locations and
regions, for example, whether a point is inside, outside or bordering a region, correspond-
ing to the point set basis of the 9 intersection model. [2]

Related versions of distance and topological constructors for objects and regions are
derived from this. In a similar way, further variants of topological constructors between
regions and objects (lrTopo, rTopo, orTopo) can be specified.

nbuild : R(Obj, Reg × Ratio) → R(Obj × Obj, Ratio)

nDist : C(Obj) → C(Obj) → R(Obj × Obj, Ratio) → R(Obj × Obj, Ratio)

The next operations build spatial distance networks from objects with impedance qual-
ities, and measure distances between objects on a spatial network. The latter needs to be
fed with a spatial network as input.

lVis : C(Loc) → C(Loc) → R(Loc, Itv) → R(Loc × Loc, Bool)

gridgraph : R(Loc, Loc) → R(Loc, Ratio) → R(Loc × Loc, Ratio)

lgDist : R(Loc × Loc, Ratio) → C(Loc) → C(Loc)

lVis measures visibility between locations, given some terrain model as a field. It is
the basis of visibility analysis in GIS. gridgraph builds a relational field from a location field
and an impedance field (where field impedance values are taken as network qualities), and
lgDist measures distances on such a location network. These functions are fundamental for
global map algebra, such as runoff modeling on a terrain model.

Conversions

invert : R(Loc, x) → R(x, Reg)

revert : R(x, Reg) → R(Loc, x)

getamounts : x ⊆ Qlt =⇒ R(Obj, Reg × x) → R(Reg, x)

invert and revert convert fields into contours (regions denoting some field value in-
terval) and nominal coverages (regions denoting homogeneous nominal field values) and
back. getamounts obtains content amounts (e.g. number of schools in some region) from
object qualities (number of schools in Utrecht).

Interpolation and buffering

extrapol : R(Obj, Reg) → R(Loc, Bool)

interpol : R(Reg, Itv) → C(Loc) → R(Loc, Itv)

JOSIS, Number 27 (2023), pp. 51–92



74 STEENBERGEN, TOP, NYAMSUREN, SCHEIDER

Based on distance relations between locations, we can define a boolean field that indi-
cates whether the distance from any field location to the nearest object is within a certain
range. Buffers, in addition, turn this boolean field into a region. The operation called ex-
trapol is the basis for the generation of buffers. Note that the operation needs a distance
parameter which is left implicit here.

Point interpolation uses some field sample (e.g. point-wise measures) to estimate a field
that is at least interval scaled, within a collection of locations (spatial extent).

Map algebra

slope : R(Loc, Itv) → R(Loc, Ratio)

aspect : R(Loc, Itv) → R(Loc, Ratio)

flowdirgraph : R(Loc, Itv) → R(Loc, Loc)

accumulate : R(Loc, Loc) → R(Loc, C(Loc))

Local, focal and global map algebra turns fields into other fields based on coinciding
locations, moving window locations, or by searching over all locations. In this paper, we
consider primitives for computing the focal operations slope, aspect and flowdirgraph6,
as well as the global function accumulate which aggregates a location network over all
connected locations into a field of collections of locations reachable from a given location.
Further map algebra functions [62] can be introduced in this way, but are not needed for
our workflows.

7.3 Amount operations

fcont : x, y ⊆ Qlt =⇒ (R(Val, x) → y) → R(Loc, x) → Reg → y

ocont : R(Obj, Reg) → Reg → Count

fcover : x ⊆ Qlt =⇒ R(Loc, x) → C(x) → Reg

ocover : R(Obj, Reg) → C(Obj) → Reg

Finally, we discuss operations to summarize the content of collections of objects and
fields as amounts. We distinguish operations that summarize a field quality, e.g. by estimat-
ing an integral (fcont), or by summing up objects (ocont). These amounts are called content
amounts. Vice versa, starting with value and object collections, we can also measure the
area covered by a field quality (fcover) and by a collection of objects (ocover), respectively.
The latter are called coverage amounts.

8 Evaluation

To support the claim that our algebra captures properties that are conceptually relevant for
transforming spatial information, we test whether (1) the building blocks of our language
are general enough to allow for the various tool decisions made by workflow authors, yet (2)
specific enough to allow for distinguishing workflows based on independent descriptions
of the underlying tasks.

6This function computes the flow direction from a height field. The direction is measured in terms of a location
network, i.e., as a location vector in the neighborhood of a location.
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8.1 Criteria of evaluation

Type correctness of workflows The type inference algorithm addresses the first concern
as a by-product, as it requires that the computed output type of every tool application in a
workflow is subsumed by the most general possible input type of its successor. This pro-
vides evidence that our algebraic descriptions are at least general enough to accommodate
the ways in which the tools are applied in practice.

Descriptive power of workflow annotations To address the second concern, we matched
the expected types of the task transformation graphs to the types in the workflow transfor-
mation graph, as automatically constructed from the workflows and tool descriptions.

A type in the workflow is still considered a match if it specifies a strict subtype of a
type in the task, but not vice versa. A task description that does not match a workflow
for the associated task produces a false negative; one that matches a different workflow
makes a false positive. The latter case is, however, not necessarily indicative of an error:
two workflows might simply be conceptually similar enough to serve as an approach for
the same task.

The resulting degree of precision (i.e. relevant matches as a fraction of all matches) is
an indicator for whether our task descriptions are specific enough to distinguish concrete
workflows. The resulting degree of recall (i.e. relevant matches as a fraction of all relevant
workflows) is an indicator for whether the tool descriptions and their constituent operators
are adequately rich in information, and whether the subsequently inferred types are correct
and at least as specific as those in the task description.

We perform several variants of this retrieval test to investigate whether automatically
annotating internal concept transformations, as we do, adds essential information that
would not be available if either the entire workflow, or its constituent tools, were treated as
‘black box’ transformations between more general concept types. That is, we test at three
levels:

1. We test whether the source and goal types of the tasks match that of the input and
output of the workflow as a whole.

2. Additionally, we test whether all types that occur in the tasks occur in the annotations
as inputs or outputs of tools.

3. Finally, we test whether they occur anywhere, even internal to the tool.

At each level, we measure the effect of transformation order and type inference:

• We test the effect of matching types in the order specified in the flowchart. Remem-
ber, here, that a task is almost always a partial specification: when matching it to a
workflow, any number of intermediate steps may be skipped. That is, if a workflow
flows from A to B to C, it will happily be matched by a task that asks us to go from
A to C—but not one that goes from C to A, unless order is disregarded.

• We can compute internal types and output types of a tool based either on the most
general type that a tool can work with, or on the type of the actual input data,7 which

7This is a simplification, as source data has not been annotated with types: types are only passed between the
output of one tool to the next. This does not make a difference for our dataset, but should be addressed when
scaling up.
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may be more specific. In the former case, the types produced by a tool are the same
no matter the context in which it is applied; in the latter, types may be different for
each particular tool application. We find the extent to which this passthrough affects
the result.

The idea here is that we can contrast the performance of the model when it has access
to all internal information exposed by the CCT expressions, versus a baseline situation in
which everything but the input and output types of tools are hidden, and in which those
types cannot influence each other across tool applications. The latter simulates a situation
in which we do not use CCT expressions at all—in which tools are annotated with static
input and output types. The information available then becomes similar to that in work that
annotates tools with input and output types. The exception is that our baseline still uses
conceptual types rather than data types, because geo-analytical questions by nature do not
contain information about data formats. Even so, we believe that the performance against
this baseline provides valuable information about the contribution of CCT expressions in
the presence of conceptual types.

Table 1 shows the retrieval quality for each variant. We must note here that we addi-
tionally report the results with a modification of the Floods task, in which the one concept
type that hinders retrieval is dropped. Doing so provides valuable information for the
discussion.

These results can be reproduced with the tools in the CCT repository.

Table 1: Quality of the matching between task and workflow. Where it made a difference,
results for the loosened Floods task are in parentheses.

Level Order Pass Type-I Type-II Precision Recall

1. Workflows n/a � 8 1 0.571 0.923
n/a X� 8 0 0.591 1.000

2. Tools � � 0 11 1.000 0.154
X� � 0 11 1.000 0.154
� X� 0 10 1.000 0.231
X� X� 0 10 1.000 0.231

3. Internal � � 2 2 (1) 0.846 (0.857) 0.846 (0.923)
X� � 2 2 (1) 0.846 (0.857) 0.846 (0.923)
� X� 2 1 (0) 0.857 (0.867) 0.923 (1.000)
X� X� 2 1 (0) 0.857 (0.867) 0.923 (1.000)

8.2 Discussion of results

Observe that recall is very good if we treat workflows as a black box, but precision suffers.
This makes sense: we can assume that source inputs and final output of a workflow will
conform to the task’s sources and goal, but it casts too wide a net to filter out false positives
(type-I errors).

Conversely, at level 2, in which we look for the task’s intermediate concepts and expect
them to be directly produced by the corresponding workflow’s tools, we get rid of those
false positives—and gain many false negatives (type-II errors).
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Table 2: Level 3 results with ordering and passthrough. Tasks are on the columns, work-
flows are on the rows. An full circle indicates a match, an empty one a mismatch. Crossing
out means that the (mis)match is erroneous.

1a 1b 2 3 4 5 6 7 8 9 10
NOISEPORTION  # # # # # # # # # #
NOISEPROPORTIONRASTER #  # # # # # # �Z # #
NOISEPROPORTIONVECTOR #  # # # # # # �Z # #
POPULATION # #  # # # # # # # #
TEMPERATURE # # #  # # # # # # #
HOSPITALSNEAR # # # #  # # # # # #
HOSPITALSNETWORK # # # #  # # # # # #
DEFORESTATION # # # # #  # # # # #
SOLAR # # # # # #  # # # #
ROADACCESS # # # # # # #  # # #
AQUIFER # # # # # # # #  # #
FLOODS # # # # # # # # # �Z# #
MALARIA # # # # # # # # # #  

To get the best of both worlds, we must capture more of the procedural knowledge
available in the task. Once we ascend to level 3, we can access the concept types ‘inside’
the tools. As a result, recall and precision significantly improve, although neither to the
point of perfection.

To investigate why recall is not perfect, we turn to the graph of the Floods task. In it,
the final transformation between A and B represents a grouping of a drainage time field by
area size, during which we expected the concept R(Ord, Reg) (the region covered by a time
interval). As it turns out, this intermediate type is never recorded in the transformation
graph, as it is hidden in the operation groupby.

This shows that the design decisions of the algebra have an effect on the accuracy of
results. The intention behind requesting the intermediate type R(Ord, Reg) was that the
output of the unit hydrograph workflow should measure the size of the regions covered by
some interval of a drainage time field. However, locations are aggregated only inside the
groupby operation, which is a primitive in the CCT algebra. This shows that the ‘resolution’
of operators has an effect on accuracy. The smaller the atomic steps, the better conceptual
transformations may be distinguished. This leaves room for future improvement. Fur-
thermore, while current task graphs contained types alone, more precise retrieval could be
be achieved by including the operators themselves (size in this example). In a follow-up
study, we intend to provide internal structure to operators, as well as examine the structure
of task transformation graphs.

Perfect precision is likewise prevented by a single task: Aquifer, which, in addition to the
AQUIFER workflow, also triggers the retrieval of the workflows NOISEPROPORTIONVEC-
TOR and -RASTER. The associated tasks are indeed superficially similar, in that they both
require turning (contour) coverages into fields and output objects. However, in the case of
Aquifer, these objects are only selected, whereas in the NoiseProportion case, we aggregate
fields within the extent of the object. To differentiate this, we would either need to specify
operations in the task, or distinguish nominal values that are explicitly not ordinal (called
plain-nominal in [57]). Both can be done in future versions.
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Taking into account the ordering of the task transformation graphs did not change the
results in our sample, for better or for worse. Evidently, unordered types are usually
enough to disambiguate our workflows, so less detailed procedural annotations would
have been sufficient. However, more subtle differentiation may be needed if the workflow
repository grows larger. In any case, it is worth noting that the expected ordering really is
present in each workflow.

Passthrough does have an effect. This is fully due to a single workflow, NOISEPORTION.
In Figure 7, we can see the reason. Its final tool, RegionFromRasterExtent, can be applied
very generally: it takes a R(Loc, Nom) and produces a R(Nom, Reg). However, by taking
advantage of type inference, we can deduce that in this instance, a value of the more specific
type R(Ord, Reg) is produced. Again, future work should reveal whether similar behaviour
is common in larger workflow repositories.

As you can see in Table 2, task descriptions are agnostic about whether distances are
measured in a Euclidean manner or over a network for Hospital’s workflows, and about
whether noise proportions are measured using raster or vector formats for NoiseProportion’s
workflows. We correctly retrieve the two pairs of workflows that implement a single task
in different formats, ignoring the technicalities of software implementation.

Caveats

Our results make a credible case for the claim that annotating conceptual-procedural
knowledge may open new avenues to avoid the limitations of describing GIS workflows
via implementation details. However, it remains an open question whether the particular
vocabulary of operators we chose present a satisfactory abstraction of GIS. To improve this,
our preliminary algebra should be condensed and tested with further tool applications and
workflow examples.

The strength of the evidence that the operators accommodate the decisions of workflow
authors is somewhat further limited by the fact that the operators and tool descriptions
have been, inevitably, created with knowledge of these workflows. Similarly, because the
task transformation graphs require expert knowledge that is in limited supply, they have
been provided by the same authors who produced the workflows’ tool descriptions. There-
fore, although care has been taken to separate the two descriptions, we cannot rule out that
knowledge of the tools has influenced the description of tasks. These caveats are unavoid-
able at this point. In the future, to provide a more rigorous evaluation, we plan to describe
independent workflows using the same tools, and thus to specify tasks independently of
the associated workflows.

The expert knowledge required to produce transformation expressions is non-trivial.
In this article, our annotations were done by two of the authors in several rounds, which
showed that annotator agreement is initially low and improves only based on clear in-
structions. To generate a larger knowledge base across various experts, detailed algebraic
annotation instructions are therefore needed. A particular challenge in this respect lies in
the ambiguity of interpreting data in concepts, which should be avoided for the purpose of
retrieval. For example, whether to interpret a contour map as coverage amount or as a field
is a question that requires scrutiny. This requires more research on geodata conceptualiza-
tions.

Finally, we have not provided algorithmic analysis on our type inference module. As
stated in Sect. 6.2, this is a pragmatic decision: our specific experimental results are not
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affected by the presence of proofs about generalities. Nevertheless, rigorous analysis would
provide guarantees about how the system would fare in the wild. This limitation should
be addressed in future work, or, if possible, eliminated by fitting an existing algorithm into
the system.

9 Conclusion and outlook

We have introduced a relational model of core concepts of geographic information, which
can be used to specify tasks and GIS workflows in terms of conceptual transformations.
Our algebra provides a vocabulary to specify transformations between these concepts, and
makes it possible to automatically add procedural knowledge to geographic workflows
using type inference.

Our tests suggest that there is merit to this approach, by showing that algebraic anno-
tations and subsequently inferred types provide important but implicit procedural knowl-
edge associated with analytical GIS tasks. We have implemented a generic toolset to facil-
itate the production of procedural annotations in GIS as a basis for distinguishing work-
flows. This modular toolset exists in the established Python and RDF ecosystems and in-
cludes an algorithm for type inference, a parser to turn workflows with annotated tools
into rich RDF graphs, and a method to query those graphs. The toolset is universal in that
it can be applied to any other knowledge domain in which procedures can be captured as
function signatures.

This makes a new form of automation possible, namely the retrieval of workflows us-
ing conceptual task descriptions that are independent of data formats and implementation
details. GIS tools can be described by transformation expressions, which can be used to
propagate conceptual types through workflows. In this way, natural language questions
interpreted as tasks can be matched with workflows that generate answer maps. This is a
core challenge for (indirect) geo-analytical question answering [58].

Building on this proof of concept, future work should focus on improving the operator
vocabulary and transformation expressions, creating independent workflows and tool an-
notations, and increasing the size of the workflow repository. It is very probable that our
current operator model is not general enough for all GIS tasks. We had to add new oper-
ators when considering new workflows. Such additions do not make the general model,
type system and retrieval mechanism obsolete, and they became less and less frequent the
more workflows were added. The principle of specification can be extended if needed for
retrieving GIS workflows for future GIS tasks. Furthermore, query results may be further
improved by using both types and function names for retrieval.

There are several possible areas of application of our algebra as a language. First, the
algebra serves as a description and retrieval language for workflows that allows querying
over different implementations. It could therefore be used in the future to describe and
compare software systems measuring their conceptual similarity. Second, the algebra pro-
vides a way to specify tasks, and thereby serves to account for the purposes of analysis.
A language to capture the different purposes of geo-analytical transformations is currently
lacking in GIScience [18]. In a similar way, the algebra provides a missing link between
workflows and the questions they answer, by tying together the loose ends of recent work
on grammatical interpretation of geo-analytical questions in terms of conceptual transfor-
mation graphs [67]. To this end, the method should be integrated into the full stack of a
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geo-analytical QA system [58]. To reach this goal, we need to combine workflow synthe-
sis using data types as in [42] with geo-analytical question parsers [67] using the algebra
as an intermediary query layer. Two major open problems concern the handling of data
quality, tool parameters and domain concepts in selecting workflows for particular data
sources. While the former will require separate conceptual models for quality concepts
and parameters, domain concepts might best be handled using NLP methods for keyword
embeddings [68], or else by introducing additional types.

Acknowledgments

This work was developed within the QuAnGIS project, supported by the European Re-
search Council (ERC) under the European Union’s Horizon 2020 research and innovation
programme (grant agreement No 803498).

Data availability

The datasets generated for the results (cf. Tables 1 and 2) are archived under
10.6084/m9.figshare.19727233.v2. Alternatively, they can be reproduced with the software
and instructions available at https://github.com/quangis/cct/tree/article1.

References

[1] Aantal inwoners - 500 meter vierkant (2018). https://cbsinuwbuurt.nl/
#sub-vierkant500m2018 aantal inwoners. Accessed: 2022-05-01.

[2] DE-9IM. https://en.wikipedia.org/wiki/DE-9IM. Accessed: 2022-05-01.

[3] Geluidskaart 2018. https://maps.amsterdam.nl/geluid/. Accessed: 2022-05-01.

[4] GI Minor - Learn GIS: Geographic Information Systems, Science and Studies. https://
nationalegiminor.wordpress.com/. Accessed: 2022-05-01.

[5] KNMI Dataplatform. https://dataplatform.knmi.nl/. Accessed: 2022-05-01.

[6] Learn ArcGIS. https://learn.arcgis.com/. Accessed: 2022-05-01.

[7] Polygon to raster - conversion. https://pro.arcgis.com/en/pro-app/2.9/
tool-reference/conversion/polygon-to-raster.htm. Accessed: 2022-05-01.

[8] RDF - Semantic Web Standard. https://www.w3.org/RDF/. Accessed: 2022-05-01.

[9] OWL Web Ontology Language. https://www.w3.org/TR/owl2-overview/, 2012. Ac-
cessed: 2022-05-01.

[10] ALBRECHT, J. Semantic net of universal elementary GIS functions. In Proceedings
ACSM/ASPRS Annual Convention and Exposition Technical Papers (1995), Citeseer.

www.josis.org

https://figshare.com/articles/dataset/Core_concept_transformation_algebra_early_evaluations/19727233
https://github.com/quangis/cct/tree/article1
https://cbsinuwbuurt.nl/##sub-vierkant500m2018_aantal_inwoners
https://cbsinuwbuurt.nl/##sub-vierkant500m2018_aantal_inwoners
https://en.wikipedia.org/wiki/DE-9IM
https://maps.amsterdam.nl/geluid/
https://nationalegiminor.wordpress.com/
https://nationalegiminor.wordpress.com/
https://dataplatform.knmi.nl/
https://learn.arcgis.com/
https://pro.arcgis.com/en/pro-app/2.9/tool-reference/conversion/polygon-to-raster.htm
https://pro.arcgis.com/en/pro-app/2.9/tool-reference/conversion/polygon-to-raster.htm
https://www.w3.org/RDF/
https://www.w3.org/TR/owl2-overview/
http://www.josis.org


ALGEBRA OF CORE CONCEPT TRANSFORMATIONS 81

[11] ALBRECHT, J. Universal analytical GIS operations: A task-oriented systematization of
data structure-independent GIS functionality. Geographic Information Research: Transat-
lantic Perspectives (1998), 577–591. doi:10.1201/9781482267938-42.

[12] BRAUNER, J. Formalizations for geooperators: Geoprocessing in spatial data infrastructures.
PhD thesis, Technische Universität Dresden, 2015.

[13] CAMARA, G., EGENHOFER, M. J., FERREIRA, K., ANDRADE, P., QUEIROZ, G.,
SANCHEZ, A., JONES, J., AND VINHAS, L. Fields as a generic data type for big spa-
tial data. In International Conference on Geographic Information Science (2014), Springer,
pp. 159–172. doi:10.1007/978-3-319-11593-1_11.

[14] CARDELLI, L. A semantics of multiple inheritance. In Semantics of Data Types (Berlin,
Heidelberg, 1984), G. Kahn, D. B. MacQueen, and G. Plotkin, Eds., Springer Berlin
Heidelberg, pp. 51–67. doi:10.1201/9781482267938-42.

[15] CHRISMAN, N. R. Exploring geographic information systems. Wiley New York, 2002.

[16] CODD, E. F. Relational completeness of data base sublanguages. In Courant Computer
Science Symposia No. 6: Data Base Systems. Prentice- Hall, New York, 1972, pp. 67–101.

[17] CODD, E. F. Extending the database relational model to capture more meaning. ACM
Transactions on Database Systems 4, 4 (Dec. 1979), 38. doi:10.1145/320107.320109.

[18] COUCLELIS, H. The abduction of geographic information science: Transporting spa-
tial reasoning to the realm of purpose and design. In International Conference on Spatial
Information Theory (2009), Springer, pp. 342–356. doi:10.1007/978-3-642-03832-7_21.

[19] DE SMITH, M. J., GOODCHILD, M. F., AND LONGLEY, P. Geospatial Analysis: a Com-
prehensive Guide to Principles, Techniques and Software Tools. Troubador Publishing Ltd,
2007.

[20] DUCK, G. J., PEYTON-JONES, S., STUCKEY, P. J., AND SULZMANN, M. Sound and de-
cidable type inference for functional dependencies. In Programming Languages and Sys-
tems (Berlin, Heidelberg, 2004), D. Schmidt, Ed., Springer Berlin Heidelberg, pp. 49–63.

[21] ESRI. Estimate access to infrastructure. https://learn.arcgis.com/en/projects/
estimate-access-to-infrastructure/. Accessed: 2022-05-01.

[22] ESRI. Estimate solar power potential. https://learn.arcgis.com/en/projects/
estimate-solar-power-potential/. Accessed: 2022-05-01.

[23] ESRI. Find areas at risk from aquifer depletion. https://learn.arcgis.com/en/projects/
find-areas-at-risk-from-aquifer-depletion/. Accessed: 2022-05-01.

[24] ESRI. Identify the closest facility. https://pro.arcgis.com/en/pro-app/2.9/help/
analysis/networks/closest-facility-tutorial.htm. Accessed: 2022-05-01.

[25] ESRI. Monitor malaria epidemics. https://learn.arcgis.com/en/projects/
monitor-malaria-epidemics/. Accessed: 2022-05-01.

[26] ESRI. Predict deforestation in the Amazon rain forest. https://learn.arcgis.com/en/
projects/predict-deforestation-in-the-amazon-rain-forest/. Accessed: 2022-05-01.

JOSIS, Number 27 (2023), pp. 51–92

http://dx.doi.org/10.1201/9781482267938-42
http://dx.doi.org/10.1007/978-3-319-11593-1_11
http://dx.doi.org/10.1201/9781482267938-42
http://dx.doi.org/10.1145/320107.320109
http://dx.doi.org/10.1007/978-3-642-03832-7_21
https://learn.arcgis.com/en/projects/estimate-access-to-infrastructure/
https://learn.arcgis.com/en/projects/estimate-access-to-infrastructure/
https://learn.arcgis.com/en/projects/estimate-solar-power-potential/
https://learn.arcgis.com/en/projects/estimate-solar-power-potential/
https://learn.arcgis.com/en/projects/find-areas-at-risk-from-aquifer-depletion/
https://learn.arcgis.com/en/projects/find-areas-at-risk-from-aquifer-depletion/
https://pro.arcgis.com/en/pro-app/2.9/help/analysis/networks/closest-facility-tutorial.htm
https://pro.arcgis.com/en/pro-app/2.9/help/analysis/networks/closest-facility-tutorial.htm
https://learn.arcgis.com/en/projects/monitor-malaria-epidemics/
https://learn.arcgis.com/en/projects/monitor-malaria-epidemics/
https://learn.arcgis.com/en/projects/predict-deforestation-in-the-amazon-rain-forest/
https://learn.arcgis.com/en/projects/predict-deforestation-in-the-amazon-rain-forest/


82 STEENBERGEN, TOP, NYAMSUREN, SCHEIDER

[27] ESRI. Predict floods with unit hydrographs. https://learn.arcgis.com/en/projects/
predict-floods-with-unit-hydrographs/. Accessed: 2022-05-01.

[28] FENSEL, D., FACCA, F. M., SIMPERL, E., AND TOMA, I. Semantic Web Services, vol. 357.
Springer, 2011.

[29] FERREIRA, K. R., CAMARA, G., AND MONTEIRO, A. M. V. An algebra for spatiotem-
poral data: From observations to events. Transactions in GIS 18, 2 (2014), 253–269.
doi:10.1111/tgis.12030.

[30] FITZNER, D., HOFFMANN, J., AND KLIEN, E. Functional description of geopro-
cessing services as conjunctive datalog queries. Geoinformatica 15, 1 (2011), 191–221.
doi:10.1007/s10707-009-0093-4.

[31] FRANK, A. U. One step up the abstraction ladder: Combining algebras-from func-
tional pieces to a whole. In International Conference on Spatial Information Theory (1999),
Springer, pp. 95–107. doi:10.1007/3-540-48384-5_7.

[32] FRANK, A. U., AND KUHN, W. Specifying open GIS with functional languages. In In-
ternational Symposium on Spatial Databases (1995), Springer, pp. 184–195. doi:10.1007/3-
540-60159-7_12.

[33] GAHEGAN, M. Specifying the transformations within and between geographic
data models. Transactions in GIS 1, 2 (1996), 137–152. doi:10.1111/j.1467-
9671.1996.tb00040.x.

[34] GALTON, A. Fields and objects in space, time, and space-time. Spatial cognition and
computation 4, 1 (2004), 39–68. doi:10.1207/s15427633scc0401_4.

[35] GIL, Y., DEELMAN, E., ELLISMAN, M., FAHRINGER, T., FOX, G., GANNON, D.,
GOBLE, C., LIVNY, M., MOREAU, L., AND MYERS, J. Examining the challenges of
scientific workflows. Computer 40, 12 (2007), 24–32. doi:10.1109/MC.2007.421.

[36] GUARINO, N., GUIZZARDI, G., AND MYLOPOULOS, J. On the philosophical founda-
tions of conceptual models. Information Modelling and Knowledge Bases 31, 321 (2020),
1. doi:10.3233/FAIA200002.

[37] GÜTING, R. H. Geo-relational algebra: A model and query language for geometric
database systems. In International Conference on Extending Database Technology (1988),
Springer, pp. 506–527. doi:10.1007/3-540-19074-0_70.

[38] GUTTAG, J. V., AND HORNING, J. J. The algebraic specification of abstract data types.
Acta informatica 10, 1 (1978), 27–52.

[39] HITZLER, P., AND VAN HARMELEN, F. A reasonable semantic web. Semantic Web 1
(2010), 39.

[40] HOFER, B., MÄS, S., BRAUNER, J., AND BERNARD, L. Towards a knowledge base
to support geoprocessing workflow development. International Journal of Geographical
Information Science 31, 4 (2017), 694–716. doi:10.1080/13658816.2016.1227441.

[41] HUGHES, J. Why functional programming matters. The Computer Journal 32, 2 (1989),
98–107.

www.josis.org

https://learn.arcgis.com/en/projects/predict-floods-with-unit-hydrographs/
https://learn.arcgis.com/en/projects/predict-floods-with-unit-hydrographs/
http://dx.doi.org/10.1111/tgis.12030
http://dx.doi.org/10.1007/s10707-009-0093-4
http://dx.doi.org/10.1007/3-540-48384-5_7
http://dx.doi.org/10.1007/3-540-60159-7_12
http://dx.doi.org/10.1007/3-540-60159-7_12
http://dx.doi.org/10.1111/j.1467-9671.1996.tb00040.x
http://dx.doi.org/10.1111/j.1467-9671.1996.tb00040.x
http://dx.doi.org/10.1207/s15427633scc0401_4
http://dx.doi.org/10.1109/MC.2007.421
http://dx.doi.org/10.3233/FAIA200002
http://dx.doi.org/10.1007/3-540-19074-0_70
http://dx.doi.org/10.1080/13658816.2016.1227441
http://www.josis.org


ALGEBRA OF CORE CONCEPT TRANSFORMATIONS 83

[42] KRUIGER, J. F., KASALICA, V., MEERLO, R., LAMPRECHT, A.-L., NYAMSUREN, E.,
AND SCHEIDER, S. Loose programming of GIS workflows with geo-analytical con-
cepts. Transactions in GIS 25, 1 (2021), 424–449. doi:10.1111/tgis.12692.

[43] KUHN, W. Core concepts of spatial information for transdisciplinary research.
International Journal of Geographical Information Science 26, 12 (2012), 2267–2276.
doi:10.1080/13658816.2012.722637.

[44] KUHN, W., AND BALLATORE, A. Designing a language for spatial computing. In
AGILE 2015. Springer, 2015, pp. 309–326. doi:10.1007/978-3-319-16787-9_18.

[45] KUHN, W., HAMZEI, E., TOMKO, M., WINTER, S., AND LI, H. The semantics
of place-related questions. Journal of Spatial Information Science, 23 (2021), 157–168.
doi:10.5311/JOSIS.2021.23.161.

[46] LEMMENS, R., WYTZISK, A., DE BY, R., GRANELL, C., GOULD, M., AND VAN OOST-
EROM, P. Integrating semantic and syntactic descriptions to chain geographic services.
IEEE Internet Computing 10, 5 (2006), 42–52. doi:10.1109/MIC.2006.106.

[47] LI, Z., GUI, Z., HOFER, B., LI, Y., SCHEIDER, S., AND SHEKHAR, S. Geospatial
information processing technologies. Manual of Digital Earth (2020), 191–227.

[48] LUTZ, M. Ontology-based descriptions for semantic discovery and composition of
geoprocessing services. Geoinformatica 11, 1 (2007), 1–36. doi:10.1007/s10707-006-7635-
9.

[49] MENNIS, J., VIGER, R., AND TOMLIN, C. D. Cubic map algebra functions for spatio-
temporal analysis. Cartography and Geographic Information Science 32, 1 (2005), 17–32.
doi:10.1559/1523040053270765.

[50] NYAMSUREN, E., TOP, E. J., XU, H., STEENBERGEN, N., AND SCHEIDER, S. Empirical
evidence for concepts of spatial information as cognitive means for interpreting and
using maps. In 15th International Conference on Spatial Information Theory (COSIT 2022)
(2022), Schloss Dagstuhl-Leibniz-Zentrum für Informatik.

[51] PAOLUCCI, M., KAWAMURA, T., PAYNE, T. R., AND SYCARA, K. Semantic matching
of web services capabilities. In International Semantic Web Conference (2002), Springer,
pp. 333–347. doi:10.1007/3-540-48005-6_26.

[52] PARREAUX, L. The simple essence of algebraic subtyping: Principal type inference
with subtyping made easy (functional pearl). Proc. ACM Program. Lang. 4, ICFP (aug
2020). doi:10.1145/3409006.

[53] SCHEIDER, S., AND BALLATORE, A. Semantic typing of linked geoprocess-
ing workflows. International Journal of Digital Earth 11, 1 (2018), 113–138.
doi:10.1080/17538947.2017.1305457.

[54] SCHEIDER, S., BALLATORE, A., AND LEMMENS, R. Finding and sharing GIS methods
based on the questions they answer. International journal of digital earth 12, 5 (2019),
594–613. doi:10.1080/17538947.2018.1470688.

JOSIS, Number 27 (2023), pp. 51–92

http://dx.doi.org/10.1111/tgis.12692
http://dx.doi.org/10.1080/13658816.2012.722637
http://dx.doi.org/10.1007/978-3-319-16787-9_18
http://dx.doi.org/10.5311/JOSIS.2021.23.161
http://dx.doi.org/10.1109/MIC.2006.106
http://dx.doi.org/10.1007/s10707-006-7635-9
http://dx.doi.org/10.1007/s10707-006-7635-9
http://dx.doi.org/10.1559/1523040053270765
http://dx.doi.org/10.1007/3-540-48005-6_26
http://dx.doi.org/10.1145/3409006
http://dx.doi.org/10.1080/17538947.2017.1305457
http://dx.doi.org/10.1080/17538947.2018.1470688


84 STEENBERGEN, TOP, NYAMSUREN, SCHEIDER

[55] SCHEIDER, S., AND DE JONG, T. A conceptual model for automating spatial network
analysis. Transactions in GIS (2021). doi:10.1111/tgis.12855.

[56] SCHEIDER, S., GRÄLER, B., PEBESMA, E., AND STASCH, C. Modeling spatiotemporal
information generation. International Journal of Geographical Information Science 30, 10
(2016), 1980–2008. doi:10.1080/13658816.2016.1151520.

[57] SCHEIDER, S., MEERLO, R., KASALICA, V., AND LAMPRECHT, A.-L. Ontology of core
concept data types for answering geo-analytical questions. Journal of Spatial Informa-
tion Science 2020, 20 (2020), 167–201. doi:10.5311/JOSIS.2020.20.555.

[58] SCHEIDER, S., NYAMSUREN, E., KRUIGER, H., AND XU, H. Geo-analytical question-
answering with GIS. International Journal of Digital Earth 14, 1 (2021), 1–14.

[59] SCHEIDER, S., AND RICHTER, K.-F. Pragmatic GeoAI: Geographic information as
externalized practice. KI-Künstliche Intelligenz (2023), 1–15.

[60] SINTON, D. The inherent structure of information as a constraint to analysis: Mapped
thematic data as a case study. Harvard Papers on Geographic Information Systems 7 (1978).

[61] SUPPES, P., AND ZINNES, J.-L. Basic measurement theory. In Handbook of Mathematical
Psychology, R. Luce, R. Bush, and E. Galanter, Eds., vol. I. John Wiley and Sons, Inc.,
New York and London, 1963, pp. 1–76.

[62] TOMLIN, C. D. Geographic Information Systems and Cartographic Modelling. No. 910.011
T659g. New Jersey, US: Prentice-Hall, 1990.

[63] TOP, E., SCHEIDER, S., XU, H., NYAMSUREN, E., AND STEENBERGEN, N. The seman-
tics of extensive quantities in geographical information. Applied Ontology 17, 3 (2022),
337–364. doi:10.3233/AO-220268.

[64] TRAYTEL, D., BERGHOFER, S., AND NIPKOW, T. Extending Hindley-Milner type in-
ference with coercive structural subtyping. In Asian Symposium on Programming Lan-
guages and Systems (2011), Springer, pp. 89–104. doi:10.1007/978-3-642-25318-8_10.

[65] VAN DILLEN, S. M., DE VRIES, S., GROENEWEGEN, P. P., AND SPREEUWENBERG, P.
Greenspace in urban neighbourhoods and residents’ health: Adding quality to quan-
tity. J Epidemiol Community Health 66, 6 (2012), e8–e8. doi:10.1136/jech.2009.104695.

[66] VISSER, U., STUCKENSCHMIDT, H., SCHUSTER, G., AND VÖGELE, T. Ontologies for
geographic information processing. Computers & Geosciences 28, 1 (2002), 103–117.

[67] XU, H., NYAMSUREN, E., SCHEIDER, S., AND TOP, E. A grammar for interpreting geo-
analytical questions as concept transformations. International Journal of Geographical
Information Science 37, 2 (2023), 276–306. doi:10.1080/13658816.2022.2077947.

[68] YANG, J., JANG, H., AND YU, K. Analyzing geographic questions using embedding-
based topic modeling. ISPRS International Journal of Geo-Information 12, 2 (2023), 52.

[69] ZHAO, P., FOERSTER, T., AND YUE, P. The geoprocessing web. Computers & Geo-
sciences 47 (2012), 3–12.

www.josis.org

http://dx.doi.org/10.1111/tgis.12855
http://dx.doi.org/10.1080/13658816.2016.1151520
http://dx.doi.org/10.5311/JOSIS.2020.20.555
http://dx.doi.org/10.3233/AO-220268
http://dx.doi.org/10.1007/978-3-642-25318-8_10
http://dx.doi.org/10.1136/jech.2009.104695
http://dx.doi.org/10.1080/13658816.2022.2077947
http://www.josis.org


ALGEBRA OF CORE CONCEPT TRANSFORMATIONS 85

A Tasks and workflows

Scenario 2: Population

What is the number of inhabitants for each neighborhood in Utrecht? [4]
The task is to assess the number of inhabitants for each neighborhood in Utrecht from

the number of inhabitants given per 100× 100m square statistical cell [1]. On a conceptual
level, the task consists of summing up amounts of objects within the regions of objects: counts
of objects covering cell regions (E) are aggregated into neighborhood counts (A,B) within
neighborhood regions (C) obtained from neighborhood objects (D).

A R(Obj, Reg×Count)B R(Obj, Count)

C R(Obj, Reg)D R(Obj, Reg×Nom)

E R(Reg, Count)

To implement this task, the POPULATION workflow involves a spatial join of cells with
neighborhood polygons using a sum operator and using some topological relation.

Scenario 3: Temperature

What is the average temperature for each neighborhood in Utrecht? [4]
The task is to assess an average temperature for each neighborhood in the Netherlands

from point measurements8. Conceptually, this task corresponds to averaging a field within
the regions of objects: we first need to interpolate pointwise measurements from weather
stations (D) into a temperature field (C), which is then averaged over neighborhood regions
(E) obtained from neighborhood data (F), resulting in an average temperature for each
neighborhood (B, A).

A R(Obj, Reg×Itv)B R(Obj, Itv)

C R(Loc, Itv)D R(Reg, Itv)

E R(Obj, Reg)F R(Obj, Reg×Nom)

To solve this task in the TEMPERATURE workflow, point measurements for the entire
Netherlands can be interpolated using Inverse Distance Weighting (IDW) to generate a
raster, which is then aggregated into administrative regions using zonal statistics.

Scenario 4: Hospitals

What is the travel distance to the nearest hospital in California? [24]
In this scenario, we need to determine, for a number of accidents, the distance to the

closest hospital in California. Conceptually, this corresponds to minimizing a distance matrix:
We need to generate a distance matrix (B) from events (C), here interpreted as objects, to
objects D, and minimize B over objects, resulting in minimal distances for each incident
(A).

8Temperature time series per station by the Royal Dutch Meteorological Institute (KNMI). [5]
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Note: In an earlier iteration, the output type of A was specified as R(Obj, Ratio). This
fails due to incidental bundling multiple attributes together, as described in Sect. 4. It will
be addressed in a future version.

A R(Obj, Reg×Ratio)B R(Obj×Obj, Ratio)

C R(Obj, Reg×Nom)

D R(Obj, Reg×Nom)

To solve this task in a workflow, we used catchment area (closest facility) analysis on a
road network (workflow HOSPITALSNETWORK). Alternatively, an equivalent result can be
obtained using the Near tool based on Euclidean distances (workflow HOSPITALSNEAR).

Scenario 5: Deforestation

What is the impact of roads on deforestation in the Amazon rain forest? [26]
We determine the proportion of the deforested area within a buffer of current roads in

the Amazon, in order to estimate the size of deforested area near a planned road. Con-
ceptually, the task is to assess the proportion of area covered by a landuse category within some
distance of an object: Existing road objects (J) are buffered, generating a boolean field (I) that
denotes whether a location is inside or outside the buffer distance. I is combined with the
deforested area field C to derive the intersection H, whose spatial coverage G is measured
as a proportion (F) of the coverage (K) of the road (M) buffers (L). This proportion (F) is
then used to derive the size of the area covered (A) by the landuse field (B), which is the
part of C within buffers (D) of new roads (E).

A R(Bool, Ratio)

B R(Loc, Bool)C R(Loc, Bool)

D R(Loc, Bool)E R(Obj, Reg×Nom)

F R(Bool, Ratio)G C(Loc)H R(Loc, Bool)I R(Loc, Bool)J R(Obj, Reg×Nom)

K C(Loc)L R(Loc, Bool)M R(Obj, Reg×Nom)

In the workflow, we are given deforested areas as polygons, current and planned roads
in the Amazon in terms of line vectors, and we use vector buffer and overlay operations to
measure proportions.

Scenario 6: Solar power

What is the potential of solar power for each rooftop in the Glover Park neighborhood in Washington,
D.C? [22]

In this scenario, we are estimating the sum of solar energy available on each rooftop in
Glover Park. This corresponds to constraining a field and summing it up over the area covered
by objects: we use the terrain field (E) to constrain the solar potential field F to D, which
is aggregated over each region of a building (rooftop) G to yield an average potential C,
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which together with the size H of rooftops is used to sum an amount of energy per rooftop
(B and A).

A R(Obj, Reg×Ratio)B R(Obj, Ratio)

C R(Obj, Ratio)D R(Loc, Ratio)

E R(Loc, Itv)

F R(Loc, Ratio)

G R(Obj, Reg×Nom) H R(Obj, Ratio)

The SOLARPOWER workflow can be implemented using local map algebra on a solar
potential raster with both slope and aspect as Boolean constraints using a digital terrain
model, which is then averaged over the building polygons using zonal statistics and mul-
tiplied by their size.

Scenario 7: Road access

What is the percentage of rural population within 2 km distance to all-season roads in Shikoku,
Japan? [21]

This scenario is about estimating the proportion of rural population that have access to
roads. Conceptually, this is asking for a proportion of object count amounts within some distance
from objects: given population counts for each metropolitan region D, we select those C that
are within rural E administrative areas F. We then build buffers H around roads I and
derive content amounts G for those buffer areas by (areal) interpolation from C. Finally,
we build the proportion A of this amount G with respect to the total population amount in
rural areas B.

A R(Reg, Ratio)

B R(Reg, Count)C R(Obj, Reg×Count)

D R(Obj, Reg×Count)

E R(Obj, Reg)F R(Obj, Reg×Nom)

G R(Reg, Count)H R(Loc, Bool)I R(Obj, Reg×Nom)

In the ROADACCESS workflow, rural population numbers are given for metropolitan
polygons, and we use a simple areal interpolation method (with weighted overlay) to esti-
mate the rural population living within road buffers. We then build a ratio of this number
with the total population.

Scenario 8: Aquifer

Which urban areas are at risk from water depletion in Ogallala (High Plains) Aquifer, US? [23]
The scenario about water depletion in Nebraska deals with finding out urban areas that

are within 150 miles of the Ogallala aquifer, and which have high irrigation needs and low
precipitation. This is done by selecting (urban area) objects overlapping with the coverage of
some (low precipitation and high irrigation) fields: from coverages of low precipitation (G) and
high irrigation (I), we derive corresponding fields (F) and (H), which are combined to select
overlapping urban regions (D of objects E) that need to be within some distance from the
region B of the aquifer C.
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A R(Obj, Reg×Nom)

B R(Obj, Reg)C R(Obj, Reg×Nom)

D R(Obj, Reg)E R(Obj, Reg×Nom)

F R(Loc, Nom)G R(Nom, Reg)

H R(Loc, Nom)I R(Nom, Reg)

The AQUIFER workflow is implemented entirely using vector polygon operations.

Scenario 10: Malaria

What is the malaria incidence rate per 1000 inhabitants in the Democratic Republic of the Congo?
[25]

In scenario 10, we form an incidence rate of malaria in proportion to population num-
bers for each administrative region of the Democratic Republic of Congo. To obtain total
population numbers, we need to sum up population amounts given as statistical squares
into administrative regions. Conceptually, this corresponds to a proportion of event and
object count amounts within the regions of objects: we sum up population content amounts
for squares C within the regions of administrative areas D to obtain population counts B,
which together with malaria incidents F on the same administrative areas E form propor-
tions A.

A R(Obj, Reg×Ratio)

B R(Obj, Reg×Count)

C R(Reg, Count)

D R(Obj, Reg×Nom)

E R(Obj, Reg×Count)F R(Obj, Count)

The MALARIA workflow implements this entirely in terms of various table joins of vec-
tor polygon data.

B Relational operators

The following operators take inspiration from relational algebra and functional program-
ming. Their interpretation is not geographical, but rather, they are used to combine ge-
ographical operations. Their type signatures are therefore quite general. There are many
different operators we could have used, and they can be reduced by defining them in terms
of eachother. The choices we make here affect the ‘resolution’ of our transformations.

Set operators
relunion : r ∈ ∆R =⇒ C(r) → r get : C(x) → x

set_diff : r ∈ ∆R =⇒ r → r → r add : v → k → R(k, v) → R(k, v)

prod3 : R(z, R(x, y)) → R(x × z, y) nest : x → y → R(x, y)

inrel : x → C(x) → Bool
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These operators are inspired by counterparts from set theory: prod3 builds a Cartesian
product from a nested relation, which results in a composite relation. nest allows us to gen-
erate singular relations and and get gets some value out of a collection. add adds elements
to collections, and inrel tests whether some element is contained in a collection.

Projection operator The projection operators project a given relation to its i’th attribute,
resulting in a collection. We define the typeclass Ci(x) = {α0 × · · · ×αn | αi = x} for those
tuple types that contain x as it’s i’th operand.

pii : k × v ∈ Ci(x) =⇒ R(k, v) → C(x)

Selection operator We may select a subset of a relation using a constraint on attribute
values, using some binary comparison operator, like equality. The subset is a particular
use of this selection, using inrel to determine whether a value is contained in a collection.

select : (k × v → Bool) → R(k, v) → R(k, v)

subset : k × v ∈
⋃
i

Ci(x) =⇒ R(k, v) → C(x) → R(k, v)

Join operators

join : R(x, y) → R(y, z) → R(x, z) get_attrL : R(x, y × z) → R(x, y)

join_attr : R(x, y) → R(x, z) → R(x × y, z) get_attrR : R(x, y × z) → R(x, z)

We introduce an operator for the natural join of two simple relations, and for construct-
ing multiple attributes from two simple relations and vice versa.

groupbyL : r ∈ {C(x), R(x, q)} =⇒ (r → q
′
) → R(x × y, q) → R(x, q′)

groupbyR : r ∈ {C(y), R(y, q)} =⇒ (r → q
′
) → R(x × y, q) → R(y, q′)

groupby : q ⊂ Qlt =⇒ (C(k) → q) → R(k, v) → R(v, q)

This operator groups quantified relations by the left (right) key, summarizing lists of
quality values with the same key value into a new value per key, resulting in a simple
relation. For example, using the function avg, we can summarize relational fields by their
left (right) location. Another variant of this operator is used to summarize keys of simple
relations by their foreign keys on the right hand side.

Operators on functions

compose : (b → c) → (a → b) → (a → c)

id : x → x

compose2 : (c → d) → (a → b → c) → (a → b → d)

swap : (x → y → z) → (y → x → z)

apply : (x → y) → C(x) → R(x, y)

apply1 : (x → y) → R(a, x) → R(a, y)

apply2 : (x → y → z) → R(a, x) → R(a, y) → R(a, z)

prod : (x → y → z) → R(a, x) → R(b, y) → R(a, R(b, z))

join_key : r ∈ {R(x, q2), R(y, q2)} =⇒ R(x × y, q1) → r → R(x × y, q2)

JOSIS, Number 27 (2023), pp. 51–92



90 STEENBERGEN, TOP, NYAMSUREN, SCHEIDER

We use higher-order functions known from functional programming, like function com-
position, argument swapping, the identity function, and the apply operators to apply a
function to each member of some relation (where apply2 applies a binary function to the
members of two simple relations). prod combines two simple relations using a binary func-
tion. This operator is fundamental to compute any quantified relations from simple rela-
tions, like distance relations between object regions. Finally, join_key substitutes the quality
of a quantified relation with some quality of one of its keys.

C Type inference algorithm

The type inference algorithm is inspired by [64], who extended the Isabelle theorem prover
with automatic insertion of type coercions. Our algorithm is simplified in that the sep-
arate steps of subtype constraint generation, simplification, graphing and resolution are
condensed into two steps: subtype-unification and subtype resolution. Furthermore, it is
extended with a form of typeclass constraints with functional dependencies.

C.1 Notation

We will provide an informal overview of the procedure. To do so, we will first establish
notation and terminology.

An expression of a transformation algebra is a repeated application of operators from a
set of typed operators Σop = {f1 : φ1 → ψ2, . . . , fn : φn → ψn} and a set of typed data
sources Σdata = {x1 : τ1, . . . , xn : τn}.

A schematic type is an type containing schematic type variables, written α, β, etcetera. Such
a type stands for all the type instances that can be created following the schema.

A type instance τ may be a concrete type variable, denoted a, b, etcetera, or a type operation,
denoted C τ1 · · · τn, D τ1 · · · τn, etcetera. Type operations have an arity n; they are called
base when n = 0 and compound otherwise. The portion of a type operation preceding its
parameters, if any, is called the operator.

Any base type C may have no more than one supertype D such that C ⊆ D.
Each parameter of a compound type C τ1 · · · τn is associated with a variance, denoted

ν(C) ∈ {⊕,	}n, expressing how the subtype of the compound type relates to each of
its constituent parameters. The i’th parameter of C is called covariant if ν(C)i = ⊕ and
contravariant if ν(C)i = 	. For example, for C τ1 · · · τn ⊆ D τ1

′ · · · τn′ to hold, its operators
must be equal (C = D), and for every i’th parameter, ν(C)i = ⊕ implies τi ⊆ τi

′ whereas
ν(C)i = 	 implies τi′ ⊆ τi.

Note that the function operator → is merely a special compound operator that is con-
travariant in its input parameter and covariant in its output parameter, e.g., ν(→) = 〈	,⊕〉.
This reflects that a function should also work on any value of a more conservative input
type, and that it produces a value that is also a member of a more liberal output type; see
also [14].

The skeleton(τ) of a type τ is a version of that type where all base types have been
replaced with fresh type variables.

A substitution θ contains mappings t 7→ τ that assign a type τ to type variable t. We
write [θ]τ for a version of τ where all relevant type variables have been substituted with
those types.
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A subtype constraint set θS contains lower bounds of the form (t ⊇̇ C) and upper bounds
of the form (t ⊆̇ C). They demand that t should eventually be bound to some base type
with subtype resp. supertype C.

A typeclass constraint set θC contains user-supplied constraints of the form
(σ ∈̇ {τ1, . . . , τn}) that indicate that there must be at least one instance [θ]τi in the constraints
such that [θ]σ ⊆ [θ]τi.

C.2 Algorithm

With this notation in hand, we sketch the general procedure. Suppose that a transformation
of type α→ β is applied to an argument of type τ . We then proceed as follows.

1. We try to find a substitution θ and a set of subtype constraints θS that would ensure that
τ has an appropriate type, that is, τ ⊆ α. To do this, we use a variation of standard uni-
fication that takes into account subtypes, as outlined in Algorithm 1. In this algorithm,
the state of the substitution θ and the constraints θS are kept in the global state as we
recursively descend through the type structure.

2. Now, we know which type variables should be bound to which types for the argument
type τ to match with the input type α. While some of the type variables are not yet
bound, we do know that they are supposed to be bound to some base type. Although
exactly which could not be determined yet during the previous step, lower and upper
bounds were put in place via θS. Now, we are ready to resolve these variables to con-
crete base types. At the top level, every type variable with a lower bound is substituted
with that bound. Type variables that occur in contravariant parameters will instead be
substituted with the bound of the opposite polarity. Note that it is possible that types
will not be fully resolved at the end of this process. Consider, for example, applying a
function of type (x → y) → x to one of type Nom → Obj: while we know that x ⊆ Nom,
Nom is not necessarily the most specific bound on x. In this case, subtype constraints
will carry over to subsequent unifications.

3. Recall that the output type of our transformation α → β was β. We apply the substitu-
tion θ that was built during the previous steps to find the final output type [θ]β.

4. We check that the constraints θC have not been violated.
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Algorithm 1 Subtype-unification.

Data: Unification candidates φ and ψ, substitution θ, constraints θS.
Result: Final substitution θ and subtype constraints θS.

1 Function UnifySubtype(φ, ψ):
2 set φ := [θ]φ and ψ := [θ]ψ if φ = C τ1 · · · τn and ψ = D σ1 · · ·σn then
3 if (n = 0 and C 6⊆ D) or (n ≥ 1 and C 6= D) then
4 unification fails
5 for i = 1 to n do
6 if ν(C)i = ⊕ then
7 UnifySubtype(τi, σi)
8 else if ν(C)i = 	 then
9 UnifySubtype(σi, τi)

10 end for
11 else if φ = C τ1 · · · τn and ψ = t then
12 if n = 0 then
13 AddLowerBound(t ⊇̇ C)
14 else
15 add t 7→ skeleton(φ) to θ UnifySubtype(φ, ψ) once more
16 else if φ = t and ψ = C τ1 · · · τn then
17 if n = 0 then
18 AddUpperBound(t ⊆̇ C)
19 else
20 add t 7→ skeleton(ψ) to θ UnifySubtype(φ, ψ) once more
21 else if φ = t and ψ = s then
22 add the substitution t 7→ s to θ foreach t ⊇̇ C ∈ θS do AddLowerBound(s ⊇̇ C)

23 foreach t ⊆̇ C ∈ θS do AddUpperBound(s ⊆̇ C)

24 Function AddUpperBound(t ⊆̇ C):
25 the current bounds on t, if any, are (t ⊇̇ L), (t ⊆̇ U) ∈ θS if C ⊂ L, or neither C ⊆ U nor

C ⊇ U then
26 unification fails
27 else
28 insert t ⊆̇ C into θS, remove t ⊆̇ U if needed
29 Function AddLowerBound(t ⊇̇ C):
30 the current bounds on t, if any, are (t ⊇̇ L), (t ⊆̇ U) ∈ θS if C ⊃ U , or neither C ⊆ L nor

C ⊇ L then
31 unification fails
32 else
33 insert t ⊇̇ C into θS, remove t ⊇̇ L if needed
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