
JOURNAL OF SPATIAL INFORMATION SCIENCE

Number 26 (2023), pp. 27–52 doi:10.5311/JOSIS.2023.26.221

RESEARCH ARTICLE

Representative dissimilar path
queries: accommodating human

movement dynamics in road
networks

Tanzima Hashema, Matt Duckhamb, Mahathir Monjura, and
Fariha Tabassum Islama

aDepartment of Computer Science and Engineering, Bangladesh University of Engineering and
Technology, Bangladesh

bSchool of Science, RMIT University, Australia

Received: May 3, 2022; returned: July 31, 2022; revised: October 30, 2022; accepted: December 16, 2022.

Abstract: We introduce a representative dissimilar path (RDP) query, a novel type of path
query in road networks. The k representative paths (RPs) between a source and a destina-
tion locations have k smallest costs for a feature (e.g., length, number of road intersections,
or straightness). Given x features and k, an RDP query returns a set of paths for a source-
destination pair such that the path set includes at least one of the k RPs for every feature,
and the path set’s similarity score is minimized. We formulate a novel measure to quantify
the similarity of a set of paths. Considering different road features and incorporating the
novel similarity measure in the computation of RDPs allow us to accommodate the human
movement dynamics between two locations in an effective way. Finding the RDPs is a
computational challenge because an RDP query requires computing the RPs for multiple
features and then finding the RDPs from an exponential number of path combinations. We
develop an efficient solution to answer RDP queries. The underlying ideas behind the effi-
ciency of our algorithms are the refinement of the search space, finding the RPs for multiple
features with a single search, and exploiting both the lower and upper bounds of the path
set’s similarity score while identifying the RDPs. We show the efficacy of the RDP query
and the efficiency of our solution to answer the RDP query in extensive experiments using
real datasets.

Keywords: Representative paths, representative dissimilar paths, similarity score, shortest
paths, road networks

c© by the author(s) Licensed under Creative Commons Attribution 3.0 License CC©

28 HASHEM ET AL.

1 Introduction

Travelers on roads have different preferences; some people like to take the shortest or the
fastest paths, whereas others prefer straight paths or the paths with the minimum number
of intersections [4]. In this paper, we introduce the representative dissimilar path (RDP)
query that finds a set of paths with an aim to incorporate different road property prefer-
ences of travelers while maintaining a reasonable dissimilarity among the paths. Hence the
answer of an RDP query is a set of dissimilar paths that are also representative of different
preferences of the travelers.

Accommodating human movement dynamics using the RDP query has several impor-
tant applications, which fall into two broad categories. First, a range of recommendation-
type applications can benefit from computing a representative set of routes corresponding
to a range of route characteristics. Wayfinders, for example, may benefit from the option
to select a path that suits their personal preferences from amongst a set of computed paths
rather than be required to precisely specify their preferences in advance of computation.
Representative but dissimilar paths can ensure coverage of different options, in contrast
to other shortest path algorithms such as k-shortest paths. Such dissimilar paths may also
be beneficial to the transportation of aid through disaster-affected regions or evacuation
during an emergency, for example. Providing the option to recommend the variety of dif-
ferent paths returned by an RDP query may help ensure that the selected route or routes
ultimately maximizes the chances of reaching the destination.

Second, a range of spatial analysis and geospatial intelligence (GEOINT) applications
may rely on the generation of a set of possible but unknown paths that a person may have
used to travel between a known source and destination location. In the case of crime analy-
sis, the likely paths that may possibly have been taken by persons of interest may need to be
generated and ranked in order to rule out suspects. In defense applications and GEOINT,
similarly, an intelligence analyst may frequently need to estimate and compare the most
likely routes a hostile agent could have taken between two locations in order to conduct a
threat assessment.

A representative path (RP) for a feature (e.g., length or number of intersections) in the
road network has the smallest cost for the corresponding feature (e.g., shortest distance
or the smallest number of intersections) among all possible paths between the source-
destination pair. The k RPs for a feature between a source-destination pair have k smallest
costs for the corresponding feature. Given a set of x features and k RPs for every feature,
an RDP query returns a path set that includes one of the k RPs for every feature such that
the similarity score of the path set is minimized.

Figure 1 shows an example of representative dissimilar paths (RDPs) returned by an
RDP query for k = 4 and x = 6 (i.e., length, intersection degree, number of intersections,
highway length, residential road length and tortuosity). The path costs for features: length,
highway length, and residential road length are computed by summing up the length of
the roads, highways, and residential roads included in the path, respectively, and the path
costs for features: intersection degree and tortuosity are computed by summing up the
intersection degree and angle between the consecutive roads in the path, respectively.

In recent years, researchers have focused on finding alternative or dissimilar paths [2,5,
7–10, 21]. However, they have major limitations:

www.josis.org

http://www.josis.org

REPRESENTATIVE DISSIMILAR PATH QUERIES 29

500 m

Destination

Source

500 m

Destination

Source

(Length) (Intersection Degree)

500 m

Destination

Source

500 m

Destination

Source

(Number of Intersections) (Highway Length)

500 m

Destination

Source

500 m

Destination

Source

(Residential Road Length) (Tortuosity)
Figure 1: Representative Dissimilar Paths (RDPs) for six features

JOSIS, Number 26 (2023), pp. 27–52

30 HASHEM ET AL.

• The set of alternate or dissimilar paths computed by the existing approaches are
not diversified in terms of different road features like path length, number of road
intersections and intersection complexity, highway or residential road length, and
straightness. For example, it may happen that all paths in the set have a large num-
ber of road intersections and include sharp turns (i.e., not straight).

• The existing similarity measures for two paths are only based on the path overlap
length. When these measures are extended for a path set by adding the similarity
score of every path pair in the set, they fail to capture the actual similarity of the paths
as they ignore the location of the path overlap. For example, the similarity score of
three paths that overlap at the same road should be higher than that of the scenario
where each pair of these three paths overlap at different roads, assuming that the path
overlap length is the same. However, if we ignore the location of the path overlap,
the similarity scores for these three paths in both scenarios are the same.

• Most existing solutions to find a set of dissimilar paths require the dissimilarity
threshold that every pair of paths should satisfy as input. It is not trivial to intuitively
determine the appropriate dissimilarity threshold without knowing the surrounding
road network structure of the source and destination locations. However, the quality
of the set of dissimilar paths depends on the specified dissimilarity threshold.

RDP queries overcome the above limitations. RDP queries consider different road fea-
tures to find RPs and then determine the RDPs from RPs. We formulate a new similarity
measure for a path set by considering both the length and location of the path overlap and
use the measure to minimize the similarity score of the path set. Intuitively, the similarity
score of a path set increases with the increase of the path overlap length and the number of
paths that overlap at the same location. To incorporate the intuition, we use the number of
distinct pairwise path overlap, the length of the path overlap, and the number of paths per
overlap as the parameters of our similarity measure for a path set (please see Section 3.3 for
details). Furthermore, the RDP query does not require the dissimilarity threshold as input.

The major challenges in evaluating an RDP query are twofold: (i) computing k RPs for
every feature and (ii) finding the path set that minimizes the similarity score from a huge
number of possible combinations of RPs. We cannot adopt efficient shortest path algo-
rithms (e.g., [24]) to compute the RPs for different features due to their dependency on the
length measure. Furthermore, evaluating the RPs for every feature independently would
traverse the same road network multiple times. We develop an efficient algorithm to find
k RPs for x features with a single traversal on the road network (i.e., without exploring the
same part of the road network multiple times). Furthermore, there are kx possible candi-
date path sets for RDPs, and it would be prohibitively expensive to compute the similarity
scores for each of these path sets. Our search space refinement technique using the upper
and lower bounds of the path set similarity score prunes the path sets that are guaranteed
to be not the answer of the RDP query. To further reduce the processing time for large k,
we show a technique to approximate the RDP query answer in return for sacrificing the
accuracy slightly.

To the best of our knowledge, we first formulate and develop the solution for RDP
queries. The contributions of our paper are summarized as follows:
• We consider both location and length of path overlap and formulate a new measure

to quantify the similarity of paths included in a path set.
• We develop an efficient algorithm that finds k RPs for all given features without ac-

cessing the same part of the road network multiple times.

www.josis.org

http://www.josis.org

REPRESENTATIVE DISSIMILAR PATH QUERIES 31

• We develop an exact algorithm and a more efficient algorithm to process RDP queries.
Our RDP algorithms exploit the lower bound and upper bound properties of our path
set similarity score and reduce the number of the candidate path sets for finding the
RDP query answer.

• We perform extensive experiments using real datasets to show the effectiveness and
efficiency of our solution.

2 Related work

In this section, we discuss the works related to our research problem from two perspectives:
(i) alternative and diversified path queries and (ii) path learning and recommendation.
Besides, there are many commercial systems like Google Maps or TomTom that have their
own confidential techniques to generate alternate paths for travelers.

2.1 Alternative and diversified path queries

Researchers exploited techniques like plateaus [17], alternative route graphs [3], and single
via paths [1] to find the paths that are alternative to the shortest paths. Plateau-based solu-
tions build two shortest-path trees rooted at source and destination locations, respectively,
and then join the trees to find the common paths between trees known as plateaus. A path
between a source and a destination via a plateau consists of the shortest path from the
source to one endpoint of the plateau, the plateau, and the shortest path from the destina-
tion to another endpoint of the plateau. A plateau goodness metric [17] states that a path
through the plateau is good if the plateau length is high and the length not included in
the plateau is low. Top k plateaus are selected and used to build k alternate paths. Alter-
nate route graphs encode the union of a set of paths between two vertices to facilitate the
computation of the alternate paths. The solution based on single-via paths selects a vertex
apart from the source and destination locations. It considers the shortest path via the se-
lected vertex as an alternative path if it satisfies a user’s specified constraints like length,
local optimality, and stretch. In [19], the authors addressed the problem of continuously
finding alternative paths for a user who travels towards a destination. The work exploits
the plateau-based method and reuses the already computed information to continuously
update the alternative paths as the user moves along a path.

A penalty-based method in [2] iteratively computes the shortest paths by adjusting the
edge weights so that the path computed in an iteration is sufficiently dissimilar from the
already computed paths. If a generated path does not satisfy the required dissimilarity cri-
teria, the path is not considered as an alternative path. Other approaches [7, 8, 10] focused
on finding a set of possible shortest paths such that each pair of paths in the set satisfy the
constraint of the maximum allowed similarity threshold in terms of the overlap length. In
these works, the authors developed both exact and heuristic solutions for finding the short-
est paths with limited overlap. The underlying idea of the exact solutions is to traverse the
road network in order of path length until k shortest paths to a destination that satisfy the
similarity threshold are found. The heuristic solutions further reduce the exploration of
the road network edges in return for sacrificing accuracy. Specifically, the heuristic solu-
tions either do not guarantee that the computed paths are as short as possible or relax the
similarity threshold but gain performance improvement in terms of computational time.

JOSIS, Number 26 (2023), pp. 27–52

32 HASHEM ET AL.

[9, 21] minimize the total length of the set of diversified paths, which is NP-hard. There-
fore, these works proposed heuristic solutions based on single-via paths and lower bounds,
respectively. In contrast, in [5], the authors modeled the problem to minimize both the total
length of the paths and the summation of the pairwise path overlap, which is also NP-hard.
This work, therefore, proposed a heuristic based on ant colony optimization.

Existing works [2, 5, 7–10, 21] use different measures to quantify the similarity between
two paths in terms of the length of the path overlap and find the set of alternative or di-
versified paths with a guaranteed dissimilarity. However, the similarity measures in these
works do not take the location of the path overlap into account. In these works, the sim-
ilarity of a set of paths is measured by adding the similarity scores for every path pair in
the path set. As a result, a set of paths with a small total similarity value can overlap at
the same locations and cause a bottleneck in attaining the purpose of using alternate or
diversified paths. We develop a similarity measure for a path set by considering both the
length and the location of path overlap (Section 3.3).

All of the above works ignore features like path straightness or the number of intersec-
tions while finding the alternative and dissimilar paths. An RDP query can incorporate any
number of features while finding the dissimilar paths. In addition, the RDP query does not
require the specification of the dissimilarity threshold parameter, which is hard to quantify
without having knowledge about the surrounding road structure of the source and des-
tination locations. The RDP query is also different from the skyline path query [18, 26],
which returns a set of non-dominant paths, where every path is better than others in terms
of at least one road feature. Thus, the number of paths returned by a skyline path query
can be huge, and more importantly, the skyline path query does not consider minimizing
the dissimilarity score of the returned paths.

2.2 Path learning and recommendation

Research works have considered recommending popular or most probable paths [6,20,31],
preferred and personalized paths [11,27,28,30] between two locations based on the learning
from the historical trajectory data.

[6,31] learns a network graph from historical trajectories and then finds the most popu-
lar paths from the derived network. [14] constructs a region graph from sparse trajectories
and finds the popular paths from the region graph. Specifically, the work clusters the road
network intersections into regions; it learns the historical travel preferences between re-
gions and transfers the learned travel preferences to the region pairs for which there is
insufficient trajectory data. DeepST [20] uses recurrent neural networks and variational
autoencoders to recommend the most probable paths.

[11] models drivers’ preferences from drivers’ trajectory data and develops recommen-
dation algorithms to find personalized paths. [30] finds popular road segments from his-
torical trajectories and uses them to find a set of paths between a source and a destination.
Then this work uses a scoring function to rank the identified paths based on user prefer-
ences and the length of the route. [27, 28] use neural networks to learn the context-based
costs for A* search for recommending personalized paths.

None of the above learning frameworks provides a set of representative dissimilar paths
for a source-destination pair.

www.josis.org

http://www.josis.org

REPRESENTATIVE DISSIMILAR PATH QUERIES 33

3 Problem formulation

We model the road network with a graphG(V,E), where each vertex in V represents a road
intersection and each edge in E represents a road connecting two vertices. A path between
two locations is a set of vertices, where each pair of consecutive vertices is connected with
an edge.

3.1 Representative paths

We define a representative path (RP) between a source and a destination locations with
respect to path features like length, number of intersections, and path straightness.

Definition 3.1. A representative path (RP). Given a feature Fx, a cost function cx for Fx, a
source location s and a destination location d, a path p between s and d is called a represen-
tative path (RP) for Fx, if cx(p) ≤ cx(p′) for any other path p′ between s and d.

The k RPs of a feature Fx are k distinct paths that have the k smallest values for the
cost function cx of Fx. Our solution can find the representative paths for a feature Fx that
satisfies the following property: cx(p) ≥ cx(p′), where p′ is a subpath of p.

3.2 Representative dissimilar path (RDP) queries

We formulate a representative dissimilar path (RDP) query as follows.

Definition 3.2. Representative dissimilar path (RDP) queries. Given a set of x features F =
{F1, F2, . . . Fx}, k RPs for each feature in F , a source location s and a destination location
d, a function sim(P) that returns the similarity score for a set P of paths, a representative
dissimilar path (RDP) query returns a set PRD of x distinct paths such that sim(PRD) ≤
sim(P ′RD) for any other set P ′RD of x distinct paths, where both PRD and P ′RD have at least
one path with cost less than or equal to kth smallest cost for every feature in F .

3.3 Similarity measure

Table 1 shows existing similarity measures for two paths pi and pj . All of these similarity
measures are based on the length of the path overlap. These measures for two paths can be
extended for a set of paths by adding the similarity scores of every pair of paths in the set.
However, measuring the similarity score of a set of paths in this way ignores the location
of the path overlaps, i.e., a set of paths that overlap at the same location are considered the
same as the scenario when some of the paths overlap at one location and the remaining
paths overlap at different locations.

Tables 2 and 3 show two path sets for the road networks shown in Figures 2(a) and 2(b),
respectively. For simplicity, we assume that all edges in the road networks have the same
length. For the path set in Table 2, three paths go through the same road 〈o, d〉, whereas, in
Table 3, each pair of these three paths overlap at three different roads. Intuitively, the path
set in Table 2 should be more similar to that of Table 3. However, according to the existing
measures, the similarity scores for these two path sets are the same because the existing
measures ignore locations of the path overlap.

We introduce the measure of similarity score for a set of paths by considering both length
and location of the path overlaps:

JOSIS, Number 26 (2023), pp. 27–52

34 HASHEM ET AL.

Measure Reference
l(pi∩pj)
l(pi∪pj)

[11–13]

l(pi∩pj)
2×l(pi)

+
l(pi∩pj)
2×l(pj)

[2, 12, 13]√
l(pi∩pj)2
l(pi)×l(pj)

[12, 13]

l(pi∩pj)
max{l(pi),l(pj)

} [12, 13]

l(pi∩pj)
min{l(pi),l(pj)

} [7]

Table 1: Similarity measures for two paths pi and pj , where l(pi∩pj) and l(pi∪pj) represent
the length of the overlap and the length of the union of pi and pj , respectively, and l(pi)
and l(pj) represent the length of paths pi and pj , respectively.

Definition 3.3. Similarity score. The similarity score of a set of n paths P = {p1, p2, . . . , pn}
that go through the set of m edges EP = {e1, e2, . . . , em} is defined as follows: sim(P) =∑m

i=1{nPO(ei) × (l(ei))
nP (ei)}, where nPO(ei) represents the number of distinct pairwise

path overlap at ei, l(ei) represents the length of the road denoted with ei and nP (ei) repre-
sents the number of paths that go through ei.

s d

a

b

c

of

e

g

u

v

w

s d

a

e

c

g

b

f

u

v
(a) (b)

Figure 2: Road network examples

Paths
p1 s, a, e, u, o, d

p2 s, b, f, v, o, d

p3 s, c, g, w, o, d

Table 2: A path set for the road net-
work in Figure 2(a)

Paths
p1 s, a, b, c, u, d

p2 s, a, f, g, v, d

p3 s, e, f, g, u, d

Table 3: A path set for the road net-
work in Figure 2(b)

The bigger the score, the higher the similarities among the paths in the set. To increase
the similarity score when the paths overlap at the same location (i.e., road network edge)
instead of different locations, we use nP (ei) as a power of l(ei). Our measure provides

www.josis.org

http://www.josis.org

REPRESENTATIVE DISSIMILAR PATH QUERIES 35

different similarity scores, 24 and 12 for the paths sets in Table 2 and Table 3, respectively,
where we assume that the length of each road is 2 units.

With the increase of the overlapped edge length, the contribution of the power factor
(i.e., nP (ei)) in our similarity score increases. In the above examples, if we assume that
the length of each road is 1 (or 3 units) instead of 2 units, our measure provides similarity
scores of 3 and 3 (or 81 and 27) instead of 24 and 12 for the paths sets in Table 2 and Table 3,
respectively. Again, we do not use nPO(ei) instead of nP (ei) as a power factor because
nP (ei) increases smoothly (i., 2, 3, 4, . . .), whereas the values of nPO(ei) becomes 1, 3, 6,
. . . for the overlap of 2, 3, 4, . . . paths.

An additional advantage of our similarity score is that the measure is not dependent
on the total length of the paths and thus does not allow the longer paths to dominate the
shorter paths having the same overlap length while finding the set of dissimilar paths.

3.4 A flexible framework

To accommodate the various preferences of users, a flexible framework to support RDP
queries can work as follows. A user can select one or multiple features and a similarity
measure from a given set of available options and provides a source location, a destination
location, and k as query parameters. Based on these user inputs, the framework shows a
path set as the answer of the RDP query. Setting k = 1 or selecting a single feature in the
framework would allow a user to ignore the constraint of dissimilarity in the generated
RDP query answer. For k = 1, the RDP query finds the representative paths that have the
smallest values for the cost functions associated with the selected feature(s). For k > 1 and
a single feature, the RDP query finds the k distinct paths that have k smallest values for the
cost function associated with the selected feature. If a user does not select any feature, the
RDP query considers all available features to find the RDPs.

4 Our approach

Our approach executes an RDP query in two phases. First, for every feature Fi ∈ F , it
retrieves a set Pi of k RPs that have k smallest values for the cost function ci. Then our
approach finds PRD, the set of x distinct paths by including one path from every path set
in {P1, P2, . . . , Px}. PRD represents the path set that minimizes the path similarity score.

4.1 Representative path computation

The straightforward way to compute k RPs for a feature is to apply any existing incre-
mental network expansion based shortest path algorithm [23], where the cost of a path is
determined based on the corresponding feature. For example, if the feature represents the
number of intersections in a path then the cost of a path is considered as the number of in-
tersections instead of the distance. The downside of this straightforward technique is that
it will require x independent searches in the road network for finding k RPs for each of the
x features. As a result, the same part of the road network may need to be explored multiple
times, and the search would incur an extremely high processing overhead. We propose
an efficient algorithm, Find_RP , to compute k RPs between s and d for every feature in
F = {F1, F2, . . . , Fx}with a single search in the road network.

JOSIS, Number 26 (2023), pp. 27–52

36 HASHEM ET AL.

Algorithm 1: Find_RP(s, d, F, k)

1 Initialize(ck1 , c
k
2 , . . . c

k
x, Vf , first, k

′);
2 i← 1;
3 cur ← i mod 2;
4 next← (i+ 1) mod 2;
5 Enqueue(Qcur, p = {s}, c1(p), c2(p), . . . , cx(p));
6 while i ≤ x do
7 {p, c1(p), c2(p), . . . , cx(p)} ← Dequeue(Qcur);
8 vl ← ExtractLast(p);
9 if ci(p) ≥ ci

k then
10 Enqueue(Qnext, p, c1(p), c2(p), . . . , cx(p));
11 while Qcur 6= ∅ do
12 {p, c1(p), c2(p), . . . , cx(p)} ← Dequeue(Qcur);
13 Enqueue(Qnext, p, c1(p), c2(p), . . . , cx(p));

14 i← i+ 1;
15 cur ← i mod 2;
16 next← (i+ 1) mod 2;
17 Initialize(Vf , first, k

′);
18 else
19 Vf [vl]← Vf [vl] + 1;
20 if vl = d then
21 j ← i;
22 while j ≤ x do
23 Pj , c

k
j , k
′, first← Update(Pj , p, i, first);

24 j ← j + 1;

25 else
26 if Vf [vl] < k′ then
27 for each adjacent vertex w of vl do
28 p′ ← p ∪ w;
29 Enqueue(Qcur, p

′, c1(p
′), c2(p

′), . . . , cx(p
′));

30 else
31 Enqueue(Qnext, p, c1(p), c2(p), . . . , cx(p));

32 return P1, P2, . . . , Px;

Algorithm 1 shows the steps of Find_RP . The inputs to the algorithm are a source
location s, a destination location d, a set F of x features {F1, F2, . . . Fx} and parameter k.
The algorithm returns xRP sets P1, P2, . . . , Px, where each RP set Pi includes k RPs between
s and d for Feature Fi. The paths in Pi are ordered in ascending order based on their costs.

The algorithm iterates x times (Lines 6–31) and in the ith iteration, k RPs for Feature
Fi are identified. The underlying idea behind the efficiency of the algorithm is that the
paths that are explored in an iteration are not explored again in the future iteration. Thus,
though our algorithm requires multiple iterations, it does not explore the same part of the
road network more than once and finds RP sets for x features with a single search. When
an RP between s and d is identified for a feature, the path also becomes a candidate RP

www.josis.org

http://www.josis.org

REPRESENTATIVE DISSIMILAR PATH QUERIES 37

for other feature if its cost for other feature Fj is less than ckj , the kth smallest cost for the
corresponding feature based on already explored paths between s and d.

The algorithm uses two priority queues Q1 and Q2, where in the ith iteration one prior-
ity queue is used to expand the network to find the RPs for feature Fi and the other one is
used to store the paths for the expansion in the (i + 1)th iteration. We denote the priority
queue that is used for the network expansion in the current iteration as Qcur, and the other
priority queue that will be used for network expansion in the next iteration as Qnext. The
queues alternate their roles in two consecutive iterations. For example, if Q1 is used for
the network expansion in the ith iteration, it is used to store paths for future expansion
in the (i + 1)th iteration. The values of cur (next) alternate between 1 and 2 (2 and 1) in
two consecutive iterations. The paths in Qcur and Qnext are ordered based on the cost for
Features Fi and Fi+1, respectively.

In addition, the algorithm uses the following variables:
• ck1 , ck2 , . . . ckx: Variable cki represents the cost of the kth RP for Feature Fi based on

already explored paths. The costs ck1 , ck2 , . . . ckx are initialized to∞.
• k′: Variable k′ is initialized to k at the start of every iteration and later represents the

number of remaining RPs that need to be identified for Feature Fi in the ith iteration.
• Vf : An array of |V | flags, where |V | is the number of vertices in the road network,

each entry Vf [v] in the array corresponds to the flag for a vertex v in the road network.
Each entry Vf [v] is initialized to zero at the start of every iteration. Vf [v] stores the
number of times v is visited in an iteration i, i.e., the number of paths that go through
v and have the smallest costs for feature Fi.

• first: Variable first is initialized to 0 at the start of every iteration and becomes 1
when an RP of Feature Fi is updated in the ith iteration.

• vl: Variable vl stores the last vertex of the last dequeued path p.
At the start, the algorithm initializes variables: ck1 , ck2 , . . . ckx to∞, each entry of Vf and

first to 0, k′ to k, i to 1, and cur and next to i mod 2 and (i + 1) mod 2, respectively
(Lines 1–4). Then the algorithm enqueues a path that contains source s along with its costs
c1(p), c2(p), . . . , cx(p) to the priority queue (Line 5). In each iteration, the algorithm con-
tinues to dequeue entries from Qcur until k RPs between s and d with k smallest costs for
Feature Fi are identified.

After dequeueing a path p along with its costs c1(p), c2(p), . . . , cx(p) from Qcur in the ith

iteration and extracting the last vertex of p in vl (Lines 7–8), the algorithm checks whether
the cost ci(p) is greater than or equal to cki (Line 9). If the condition is true, then it is
guaranteed that k RPs with k smallest costs for Feature Fi have been found. This is because
our approach only allows a feature for which the cost of a path is greater than the cost of its
subpath (Section 3.1). Thus, the algorithm dequeues the remaining paths along with their
costs stored in Qcur and enqueues them and p into Qnext (Lines 10–13), then exchanges the
values of cur and next (Lines 14–16), and initializes Vf , first, k′ again (Line 17) for the
(i+ 1)th iteration.

If ci(p) is smaller than cki (Line 9), then the algorithm increments the visited flag Vf for
the last vertex vl of the dequeued path p by 1 (Line 19). If vl represents destination d (Line
20), then the algorithm considers every Feature Fj for j ≥ i and updates its RP set Pj and
ckj , if cj(p) is smaller than ckj (Lines 22–24). If first is 0 and tth RP of Fi is updated in Pi, the
algorithm also sets k′ to k− t+ 1 and first to 1 using Update function (Line 23). For t > 1,
it means that the first (t − 1) RPs with t smallest costs have already been identified in the
previous iterations.

JOSIS, Number 26 (2023), pp. 27–52

38 HASHEM ET AL.

If vl does not represent d and Vf [vl] ≤ k′ (Line 26), then the algorithm forms new paths
by adding every adjacent vertex w of vl to p and enqueues them along with their costs
to Qcur (Lines 27–29). Two vertices are adjacent if they are connected with an edge. If
Vf [vl] > k′, then the algorithm enqueues p to Qnext as the k′ paths that have k′ smallest
costs for feature Fi and go through vl have been already considered (Line 31).

4.2 Representative dissimilar path set computation

A naïve solution to find the optimal RDP set is computing the similarity scores for all pos-
sible candidate RDP sets and then selecting the one that minimizes the similarity score.
However, the number of possible candidate RDP sets is kx, and considering such a huge
candidate RDP sets would be computationally expensive.

We develop an efficient algorithm that does not need to consider all candidate RDP
sets to find the RDP query answer. Our algorithm exploits the lower and upper bound
properties of the similarity score to refine the search space. Our algorithm first finds an
upper bound of the similarity score for the optimal RDP path set and then prunes the
partially or completely formed candidate RDP sets whose lower bounds of the similarity
score exceed the derived upper bound.

We first discuss the ways to compute the lower and upper bounds of the optimal simi-
larity score and then present our algorithm to find the RDP set.

4.2.1 Lower bounds

Our similarity score measure for a set of paths P has the following property: the similarity
score for a path set is greater or equal to the summation of the similarity scores for each
pair of paths included in the path set, i.e., sim(P) ≥

∑
pi,pj∈P sim(pi, pj). In addition to

this property, we use the following minimum similarity score measures in the computation
of lower bounds.
• Given a specified RP p of feature Fi and an RP set Pj of feature Fj , the minimum sim-

ilarity score between p and any RP in Pj for i 6= j is simmin
j(p) = minp′∈Pj

sim(p, p′).
• Given an RP set Pi of feature Fi and an RP set Pj of feature Fj , the minimum

similarity score between any RP in Pi and any RP in Pj for i 6= j is simmin
ij =

minp∈Pi
∧

p′∈Pj
sim(p, p′).

Based on the available information about the paths included in an RDP set P , the lower
bound of the similarity score of P is measured as follows:

Rule (i). Let a candidate RDP set P include a specified RP p for feature Fi ∈ F and any
RP for each of the other features in F \ Fi. The lower bound of the minimum similarity
score of P is measured as siml(P) =

∑
Fj∈F\Fi

simmin
j(p) +

∑
Fj ,Fk∈F\Fi

simmin
jk.

Rule (ii). Let a path set P ′ includes x′ < x specified paths, where one path is rep-
resentative of one feature in F ′ ⊂ F . Let a candidate RDP set P include P ′ and any
RP for each of the other features in F \ F ′. The lower bound of the minimum similarity
score of P is measured as siml(P) =

∑
(p,p′)∈P ′ sim(p, p′) +

∨
p∈P ′

∑
Fj∈F−F ′ simmin

j(p) +∑
Fj ,Fk∈F\F ′ simmin

jk.
Rule (iii). Let a candidate RDP set P include a specified RP p for every feature Fi ∈

F . The lower bound of the minimum similarity score of P is measured as siml(P) =∑
(p,p′)∈P sim(p, p′).

www.josis.org

http://www.josis.org

REPRESENTATIVE DISSIMILAR PATH QUERIES 39

4.2.2 Upper bounds

The underlying idea behind having the upper bound of the similarity score for an RDP set is
to compute actual similarity scores of z candidate RDP sets and take the minimum of these
similarity scores as the upper bound. To get a tight upper bound, we select z candidate
RDP sets that have the smallest values for the lower bound of the similarity score.

Specifically, the steps to compute the upper bound of the similarity score of the optimal
path set are as follows:

Step 1. We first compute one candidate path set for every RP p in Pi, where Pi ∈
{P1, P2 . . . Px}. A candidate path set P includes x distinct paths: a path p representing
a feature Fi ∈ F and a path p′ for every other feature Fj in F \ Fi such that sim(p, p′) =

simj
min(p). Since there are x features F1, F2, . . . , Fx and k RPs in Pi for every Feature Fi,

the total number of candidate path sets is x× k.
Step 2. For each candidate path set P , we compute the lower bound of the similarity

score as siml(P) =
∑

(p,p′)∈P sim(p, p′) (please see Rule (iii) in Section 4.2.1).
Step 3. We sort the candidate path sets in an ascending order based on their lower

bounds of the similarity scores and select z candidate path sets that have z smallest values
for the lower bound of the similarity score.

Step 4. We compute the actual similarity scores for z candidate path sets and consider
the minimum similarity score as the upper bound Su of the optimal similarity score.

4.2.3 Algorithms

Algorithm 2: Find_RDP(s, d, F, P1, P2, . . . , Px)
1 end← 0;
2 Mep,Mpp,MpF ,MFF ← CompM(P1, P2, . . . , Px);
3 Su, PRD ← CompUpperBound(s, d, P1, P2, . . . , Px);
4 for each path p ∈ P1 do
5 if siml(p)) ≤ Su then
6 Enqueue(Qp, {p}, siml(p));

7 while Qp is not empty and end = 0 do
8 {Pc, sim

l(Pc)} ← Dequeue(Qp);
9 if siml(Pc) > Su then

10 end← 1;
11 else
12 if contains(Pc, F) then
13 if sim(Pc) < Su then
14 Su, PRD ← sim, Pc;

15 else
16 for each path p ∈ Pi do
17 if siml(Pc ∪ p) ≤ Su then
18 Enqueue(Qp, Pc ∪ p, siml(Pc ∪ p));

19 return PRD ;

JOSIS, Number 26 (2023), pp. 27–52

40 HASHEM ET AL.

Algorithm 2, Find_RDP, shows the pseudocode to find the answer of an RDP query. The
inputs to the algorithm are a source location s, a destination location d, a set F of x features
{F1, F2, . . . Fx}, and a set of path sets {P1, P2, . . . Px}, where Pi is a set of k RPs of feature
Fi. The algorithm returns the answer of the RDP query as PRD.

The symbols and notations that we use in our algorithms are listed below:
• {e1, e2, . . . , em}: The paths in {P1, P2, . . . , Px} go through {e1, e2, . . . , em}, the set of
m distinct edges.

• Mep: A matrix of k × x rows and m columns. Each row corresponds to a path p
in in Pi, where Pi ∈ {P1, P2 . . . Px}, and each column corresponds to an edge in
{e1, e2, . . . , em}. Each cell is set to 1 if the path represented by the row go through
the edge represented by the corresponding column, otherwise 0.

• Mpp′ : A matrix of k×x rows and k×x columns. Each row (column) corresponds to a
path p in Pi, where Pi ∈ {P1, P2 . . . Px}. Each cell has sim(p, p′), if the corresponding
row represents p and the corresponding column represents p′ and p 6= p′.

• MpF : A matrix of k × x rows and x columns. Each row corresponds to a path
p in Pi, where Pi ∈ {P1, P2 . . . Px}, and each column corresponds to a feature in
{F1, F2, . . . , Fx}. Each cell has simmin

j(p), if the corresponding row represents p ∈ Pi

and the corresponding column represents Fj for i 6= j. Note that more than one row
may represent the same path p as it might be included in more than one path sets in
{P1, P2, . . . , Px}. In such scenarios, simmin

j(p) of different cells may differ based on
which path set p belongs to.

• MFF : A matrix of x rows and x columns. Each row (column) corresponds to a feature
in {F1, F2, . . . , Fx}. Each cell has simmin

ij if the corresponding row represents Fi and
the corresponding column represents Fj and i 6= j.

• Su: the upper bound of the similarity score for an RDP set generated from represen-
tative path sets P1, P2, . . . , Px for a source location s and a destination location d.

• siml(P): the lower bound of the similarity score for a path set P .
The algorithm first initializes end to 0, computes the matrices Mep,Mpp,MpF ,MFF

(Lines 1–2). The algorithm then finds the upper bound Su of the similarity score and the
corresponding path set PRD using the steps shown in Section 4.2.2 (Line 3). The algorithm
uses a priority queue Qp, where entries are ordered in ascending order based on the lower
bound of the similarity score of the path set of the entries. For every path p ∈ P1, a path set
is enqueued into Qp, if the lower bound siml(p) of the similarity score of the path set that
includes p is smaller than or equal to Su (Lines 4–6). After this step, the algorithm iterates
until the actual PRD is identified (Lines 7-19).

In each iteration, a path set Pc with the smallest lower bound of the similarity score
siml(Pc) is dequeued from Qp as {Pc, sim

l(Pc)} (Line 8). If siml(Pc) > Su then the path set
PRD has the smallest similarity score, i.e., the answer is already found and thus, end is set
to 1 (Lines 9–10). Otherwise, the algorithm checks whether Pc includes x paths, one path
from every feature (Line 12). If yes and the actual similarity score sim(Pc) of Pc is smaller
than Su, then the algorithm updates Su and PRD with sim(Pc) and Pc, respectively (Lines
12–14). If Pc does not include x paths, then the algorithm enqueues a path set Pc ∪ p along
with its lower bound siml(Pc ∪ p) of the similarity score for every p ∈ Pi, if siml(Pc ∪ p) is
smaller than or equal to Su (Lines 16–18).

Approximation. We select the candidate RDP set that provides the upper bound to ap-
proximate the RDP query answer and further reduces the query processing overhead. We
use Function CompUpperBound (Line 3 of Algorithm 2) to approximate the RDP set.

www.josis.org

http://www.josis.org

REPRESENTATIVE DISSIMILAR PATH QUERIES 41

5 Experiments

In this section, we present our experimental results to show the effectiveness of RDP
queries in accommodating the human movement dynamics in road networks and the effi-
ciency of our solution to process RDP queries.

We introduce the RDP query in this paper and there is no existing solution that can
find the answer of an RDP query (please see Section 2 for details). Thus, we evaluate the
performance of our solution in experiments by varying different parameters: the number
of representative paths (Section 5.1), features (Section 5.2), trip length (Section 5.3) and
context (Section 5.4). We also investigate the feasibility of using an approximation of the
RDP algorithm in experiments (Section 5.1). In addition, we show that our approach is
significantly faster than a naïve approach (Section 5.1).

Furthermore, we compare the performance of RDPs against the shortest paths for an in-
dication of the quality of our RDPs (Section 5.5). We show that RDPs perform significantly
better at capturing the actual paths taken by real navigators compared to the shortest paths.
The works on finding the alternative or diversified paths (e.g., [9, 10, 21]) focused on mini-
mizing the individual or total path length while ensuring that the pair of paths satisfy the
constraint of the maximum similarity threshold. Since the computed paths by these works
widely vary for different similarity thresholds, instead of comparing our RDPs with the
generated paths by each of these works independently for different similarity thresholds,
we compare our RDPs with the shortest paths. Finally, we summarize our experiment
results (Section 5.6).

Datasets. We used Beijing taxi trajectory dataset [32, 33] for our experiments. This
dataset contains GPS trajectories of 10,357 taxis over seven days (February 2 to February 8,
2008) with an average sampling interval of about 177 seconds with a distance of about 623
meters. We randomly selected 500 taxis and generated 40,027 trips for these taxis.

To generate the trips from the GPS points of taxi trajectories, we considered the maxi-
mum sampling threshold as five minutes since, in more than 95 percent of cases, the time
interval between two sample GPS points in the dataset is less than or equal to five minutes.
Thus, we can assume that a time interval of more than five minutes indicates the beginning
of a new trip. We also considered the presence of the same GPS points multiple times con-
tinuously as the end of a trip. While extracting the trips from Beijing taxi trajectory dataset,
we also identified the context (e.g. weekday or weekend, day or night) of the trips.

In the next step, we matched the GPS points of the extracted trips to the Beijing road
network using the algorithm proposed in [22]. We collected the road network of Beijing
from OpenStreetMap1 using the OSMnx tool2 in the Python language. It contains a total of
34749 vertices and 80602 edges. Each edge of our road network has the following associated
information: start and end vertices, length, degree of start vertex, degree of end vertex, and
whether the road represented by the edge is a highway, or a residential road.

Parameters. We use six features: length (F1), intersection degree (F2), number of in-
tersections (F3), highway length (F4), residential road length (F5) and tortuosity (F6). All
of these features, except the tortuosity, are directly found in the road network data. To
compute the angle between two consecutive edges in a path for the tortuosity feature, we
convert the GPS coordinates of the endpoints of the edges to the points in the geometric
plane and then use the following formula: cosθ =

~A· ~B
A×B , where ~A and ~B represent two

1www.openstreetmap.org
2https://wiki.openstreetmap.org/wiki/OSMnx

JOSIS, Number 26 (2023), pp. 27–52

42 HASHEM ET AL.

vectors created from the two edges, respectively. The tortuosity of a path is measured as
the summation of the angles between every pair of consecutive edges in the path. The costs
of a path for other features (F1–F5) are found by summing up the costs associated with the
edges or the vertices in the path.

Besides features, we vary k, trip length, and the context in our experiments. We vary k
as 1, 2, 4, and 8 and set its default value to 4. We divide the generated taxi trips based on
trip length L: (0km-5km], (5km-10km] and (10km-∞]. We consider weekdays, weekends,
days, nights, peaks, and off-peaks as context. When we vary length range and/or context
in our experiments, we consider the endpoints of the taxi trips of the corresponding length
range and/or context as source-destination pairs of RDP queries.

To compute the upper bound in Find_RDP, we consider z candidate path sets that have
z smallest values for the lower bound of the similarity score. We set z to 10 because we
vary z from 1 to 20 and find that the average vertex coverage remains almost the same,
whereas the processing time initially decreases slightly up to the value of 10 and then starts
increasing again.

Measures. We measure the efficiency of our algorithms in terms of the average process-
ing time. We use a machine with the Intel Core i7-8565U CPU @ 1.80 GHz processor and 16
GB RAM, Windows 10 64-bit operating system, and CLion to run the queries.

We consider the original taxi trips as representative of actual human movement dynam-
ics between different pairs of source and destination locations and compute the efficacy of
the RDP query by measuring the average vertex coverage and other statistical measures with
respect to the original taxi trips. The source and destination locations of RDP queries come
from the endpoints of the taxi trips. Given a taxi trip and an RDP set for a source and des-
tination pair, the vertex coverage of the RDP set is measured as the percentage of vertices
of the taxi trip that is included in the paths of the RDP set. The aim of an RDP query is to
provide a set of paths that in combination cover the breadth of routes that may be taken by
the users to travel between a source and destination locations. Thus, the higher the aver-
age vertex coverage rate, the better the performance of the RDP query, because it indicates
the returned RDPs better matched the real routes taken. In our experiments, we measure
the vertex coverage of an RDP set with respect to the taxi trip from which the source and
destination locations of the RDP query sample is derived.

For every experiment, we consider 1000 RDP query samples, and measure the average
performance (i.e., average processing time and average vertex coverage) of our solution.

5.1 Effect of the number of representative paths k

Figure 3(a) and Figure 3(b) show the average vertex coverage and processing time, respec-
tively, for varying k for different trip length range L. We observe that the average vertex
coverage slightly increases with the increase of k for every L. Our approach considers k
RPs for every feature. However, the RPs of a feature normally vary by a few vertices (e.g.,
paths in Figure 8 for the length feature). Since we select only one path from each feature,
the final average vertex coverage changes very slightly if we increase the value of k. The
high vertex coverage in our solution mainly comes from considering the dissimilar RPs of
different features, not the number of RPs we consider for each feature.

For the processing time, we find that our approach can compute RDPs with a small
processing cost (0.250-35.381 seconds). The rate of increase of the processing time of both of
our algorithms: Find_RP and Find_RDP (denoted as RP and RDP) is very low for changing

www.josis.org

http://www.josis.org

REPRESENTATIVE DISSIMILAR PATH QUERIES 43

0

20

40

60

80

100

1 2 4 8

V
e

rt
e

x
 C

o
v
e

ra
g
e

 (
%

)

k

L:(0km-5km] L:(5km-10km] L:(10km-∞]

(a) (b)

Figure 3: Effect of varying k on average (a) vertex coverage and (b) processing time

k from 1 to 4 and is very high for changing k from 4 to 8. Figure 3(b) also shows that RDP
contributes more than RP in the total processing time.

Approx-RDP vs. Opt-RDP. We compare our optimal algorithm (Algorithm 2) for find-
ing the RDPs with an approximation that considers the RDPs identified as PRD while
computing the upper bound (Line 3 in Algorithm 2). In the graphs, we denote them as
Optimal-RDP and Approx-RDP, respectively. In Figure 4, we show the results for k = 4
and k = 8 because for smaller k, the processing time of Optimal-RDP is extremely low
and there is no need for an approximation algorithm (Figure 3(b)). We observe that though
the average vertex coverage for both Optimal-RDP and Approx-RDP are almost the same,
the processing time of Approx-RDP reduces significantly, for example, Approx-RDP is, on
average, 120 times faster than Optimal-RDP for k = 8. Similar to Optimal-RDP, we set the
default value of z to 10 for Approx-RDP.

0

20

40

60

80

100

L:(0km-5km] L:(5km-10km] L:(10km-]

V
e

rt
e

x
 C

o
v
e

ra
g
e

 (
%

)

Trip Length

Opt-RDP Approx-RDP

(a) k = 4 (b) k = 4

0

20

40

60

80

100

L:(0km-5km] L:(5km-10km] L:(10km-]

V
e

rt
e

x
 C

o
v
e

ra
g
e

 (
%

)

Trip Length

Opt-RDP Approx-RDP

(c) k = 8 (d) k = 8

Figure 4: Approx-RDP vs. Opt-RDP

JOSIS, Number 26 (2023), pp. 27–52

44 HASHEM ET AL.

We also analyze how similar the RDPs of Approx-RDP are to those of Optimal-RDP. For
every feature, we consider the paths of the corresponding feature included in the optimal
and approximate RDP sets, and then, calculate the percentage of common edge length
compared to the total length of unique edges included in two paths. Table 4 shows that
the percentage of the common path portion is quite high for k = 4 and k = 8, hence the
feature-wise paths included in the optimal and approximate RDP sets are similar.

Length Range F1 F2 F3 F4 F5 F6

k
=

4 L:(0km-5km] 74.46 74.77 71.56 75.73 79.37 75.75
L:(5km-10km] 88.30 86.40 88.38 85.95 91.17 86.50
L:(10km-∞] 92.70 91.44 90.78 89.57 94.31 89.24

k
=

8 L:(0km-5km] 62.70 59.60 59.49 62.03 69.18 62.65
L:(5km-10km] 80.52 77.92 78.10 74.01 84.18 74.31
L:(10km-∞] 87.22 82.44 82.72 77.73 89.31 82.09

Table 4: Feature wise common path portion (%) in the optimal and approximate RDP sets

Our approach vs. naïve approach. We compare our approach (Algorithm 1 and Algo-
rithm 2) to find the answer of an RDP query with a naïve approach. The naïve approach
first computes k RPs for every feature using Algorithm 1, and then calculates the similarity
score of each possible path set that includes at least one RP for each feature. The naïve ap-
proach considers the path set with the minimum similarity score as the answer of the RDP
query. Since the possible number of path combinations is exponential, the naïve approach
is prohibitively expensive. Experiment results show that our approach is on average 8.4
times faster than the naïve approach (Figure 5). Note that both, our approach and the naïve
approach, return the optimal answer and thus, the average vertex coverage achieved by
them are same.

(a) k = 4 (b) k = 8

Figure 5: Our approach vs. Naïve approach

5.2 Effect of features

Figure 6 shows the average vertex coverage by each feature’s RP in the RDP set for different
trip length ranges. We observe that the average vertex coverage is the maximum when
all paths of the RDP set are considered. However, the same vertices may be covered by
multiple paths in the RDP set. Table 5 shows the average vertex coverage by excluding

www.josis.org

http://www.josis.org

REPRESENTATIVE DISSIMILAR PATH QUERIES 45

Figure 6: Statistics on vertex coverage: min, median, max, interquartile (25%, 75%) and
mean (k = 4)

each feature’s RP in the RDP set. In our experiment, each RDP set consists of six RPs, one
from a feature in F . When we exclude one feature’s RP, we find the vertex coverage as
the percentage of vertices of the taxi trip that is included in the remaining five paths of the
RDP set. In Table 5, we observe that the average vertex coverage achieved by all paths in
the RDP set reduces by ignoring any feature’s RP in the RDP set, which means that every
feature’s RP in the RDP set exclusively includes some of the vertices of the taxi trip.

Length Range/Feature F F \ F1 F \ F2 F \ F3 F \ F4 F \ F5 F \ F6

L:(0km-5km] 90.37 88.34 89.59 89.53 88.86 88.30 85.95
L:(5km-10km] 68.04 62.10 66.78 66.80 66.18 64.70 59.62
L:(10km-∞] 44.75 39.87 43.71 43.62 43.24 41.88 37.44

Table 5: The average vertex coverage (%) achieved by the RDPs of all features and by
excluding the RDP of F1/F2/F3/F4/F5/F6 for k = 4

JOSIS, Number 26 (2023), pp. 27–52

46 HASHEM ET AL.

5.3 Effect of trip length

(a) L:(0km-5km] (b) L:(5km-10km]

(c) L:(10km-∞]
Figure 7: Histograms showing the number of trips for varying vertex coverage (%) for three
trip length ranges (k = 4)

Figure 3 shows that the average vertex coverage decreases and the processing time in-
creases with the increase of the trip length. The processing time increases because our
algorithm needs to explore more edges before reaching the destination while identifying
k RPs for the increased trip length. The average vertex coverage decreases because the
increased trip length means a higher probability of deviation from the original trip.

In Figure 7, the histograms show the number of trips for varying vertex coverage (%) for
three trip length ranges, where we set k to default value 4. For L:(0km-5km], our solution
achieves more than 90% vertex coverage for 72.1% trips. For L:(0km-5km], our solution
achieves more than 50% vertex coverage for 73.2% trips, among which 27.5% achieve more
than 90% vertex coverage. For L:(10km-∞], only 36.4% trips achieve more than 50% vertex
coverage.

5.4 Effect of context

Table 6 shows that the average vertex coverage does not show any significant variation in
different contexts like weekdays, weekends, day, night, peak, and off-peak. The variation
in the average vertex coverage for L:(10km-∞] is (45%-52%), which is higher than those
of both L:(0km-5km] and L:(5km-10km]. The variation in the average vertex coverage for
L:(0km-5km] and L:(5km-10km] are 89%–90% and 67%–68%, respectively. In this set of

www.josis.org

http://www.josis.org

REPRESENTATIVE DISSIMILAR PATH QUERIES 47

experiments, we randomly selected 1000 RDP query samples for every context and set k
to default value 4. The variation in the average vertex coverage might change if the same
set of RDP query samples (i.e., source-destination pairs) is used for all contexts. However,
the dataset does not include sufficient taxi trips for different contexts with the same pairs
of source and destination for running experiments.

Length Range/Time Weekdays Weekend Day Night Peak Off-peak
L:(0km-5km] 89.04 89.7 90.41 90.23 90.41 89.55

L:(5km-10km] 66.99 67.49 68.42 69.06 67.98 66.83
L:(10km-∞] 47.88 47.96 45.32 46.46 51.15 52.31

Table 6: Effect of context on average vertex coverage (%) (k = 4)

5.5 Representative dissimilar paths vs. shortest paths

m Number of trips
L:(0km-5km]

Number of trips
L:(5km-10km]

Number of trips
L:(10km-∞]

1 414 138 55
2 103 28 13
3 61 24 15
4 27 21 9
5 33 20 12
6 19 8 6

7-10 60 40 25
11-20 60 75 22
20+ 223 646 843

Table 7: Required m shortest paths to achieve the same vertex coverage as RDPs (k = 4)

In these experiments, for each trip length range, we randomly select 1000 taxi trips
and consider the endpoints of these trips as source-destination pairs of RDP queries. We
compute the topm shortest paths between the source and destination locations of each RDP
query, where the vertex coverage achieved by the top m − 1 shortest paths with respect to
the taxi trip is smaller than the vertex coverage achieved by the RDPs. The vertex coverage
of both RDPs and shortest paths are computed with respect to the taxi trip from which the
source and destination locations of the RDP query are considered. The vertex coverage of
the top m shortest paths is the percentage of vertices of the taxi trip that is included in the
top m shortest paths.

In Table 7, we show the number of taxi trips for which the top-m shortest paths achieve
the same or more vertex coverage as RDPs for different m. In Figure 9 of Appendix A.1,
we plot the vertex coverage (%) achieved by each RDP set and corresponding m. An RDP
query returns a set of six paths, where one path corresponds to a feature in F and |F | = 6.
If m is shown as a range (e.g., 7 to 10 in the seventh row), then it is guaranteed that the top
6 shortest paths achieve smaller vertex coverage than RDPs.

For the trip length rangeL:(0km-5km], more than six shortest paths (m > 6) are required
for 34.3% (i.e., 60+60+223=343 trips out of 1000, please see the first column of the last three

JOSIS, Number 26 (2023), pp. 27–52

48 HASHEM ET AL.

500 m

Destination

Source

500 m

Destination

Source

500 m

Destination

Source

(Original Trip) (Shortest Path 1) (Shortest Path 2)

500 m

Destination

Source

500 m

Destination

Source

500 m

Destination

Source

(Shortest Path 3) (Shortest Path 4) (Shortest Path 5)

500 m

Destination

Source

500 m

Destination

Source

500 m

Destination

Source

(Shortest Path 6) (Shortest Path 7) (Shortest Path 8)

Figure 8: Original Taxi Path and Shortest Paths

rows of Table 7) trips to obtain at least the vertex coverage achieved by RDPs. Similarly, for
the rangeL:(5km-10km] andL:(10km-∞], more than six (m > 6) shortest paths are required
for 76.1% and 89% trips, respectively, to obtain at least the vertex coverage achieved by
RDPs. More importantly, for the range L:(5km-10km] and L:(10km-∞], more than 20 (m >
20) shortest paths are required for 64.6% and 84.3% trips, respectively, to obtain at least the
vertex coverage achieved by RDPs.

Finding such a large number of shortest paths is not realistic as it would incur an ex-
tremely high processing overhead. Thus, our solution based on RDPs is significantly better

www.josis.org

http://www.josis.org

REPRESENTATIVE DISSIMILAR PATH QUERIES 49

than that based on the shortest paths. The reason behind large m is that the shortest paths
do not show significant variation. Figure 8 shows an example taxi trip from the dataset
and eight shortest paths considering the source-destination locations of the taxi trip. In this
example, the second shortest path is found by only changing a small road in the first short-
est path. Figure 1 shows six RDPs considering six features (F1–F6), and the paths have the
same source and destination locations as the taxi trip shown in Figure 8. The percentage
of the vertices of the original trip (Figure 8(a)) that is covered by six RDPs is much higher
than that of the six shortest paths.

5.6 Summary

We provide an experimental analysis of the efficiency of our approach, showing that the
computation is significantly faster than a naïve approach. We compute the vertex coverage
of a returned RDP set in comparison with real human paths (taxi routes), showing that
RDPs are able to reasonably accurately represent those real paths. The high average ver-
tex coverage achieved in our experiments validates the effectiveness. We also show that
compared with k-shortest paths, RDP result sets are significantly better at capturing real
human movement.

6 Conclusion

We introduced a novel query type in road networks called the representative dissimilar
path (RDP) query. Unlike existing works on finding the dissimilar paths, a key advan-
tage of the RDP query is that it does not require users to specify the required dissimilarity
threshold, which is hard to estimate. We formulated a new measure to quantify the dissimi-
larity among a set of paths by considering both the length and location of path overlaps. We
addressed the problem of RDP queries in two phases: we first compute k RPs for every road
feature, and then we find the RDPs from the generated RPs. Our search space refinement
techniques allow our algorithms to find the RPs and RDPs with a significantly reduced
processing overhead. We also developed an approximation algorithm to further reduce the
processing overhead for finding RDPs in return of sacrificing the accuracy slightly, espe-
cially for the scenario when k is large. Experiments validated the efficacy of RDP queries
in accommodating the human movement dynamics and the efficiency of our proposed so-
lution for RDP queries. Exploiting different road features and our novel path set similarity
measure play key roles for RDPs to achieve high coverage of human movements.

In this paper, we have only considered the static features of the roads. In the future,
we plan to investigate the impact of dynamic features like road traffic, road safety and
weather on the movements of travelers on roads [16,29]. We will also exploit representative
dissimilar paths to visit different point of interests (e.g., restaurants, ATM booths and gas
stations) and plan trips [15, 25].

References
[1] ABRAHAM, I., DELLING, D., GOLDBERG, A. V., AND WERNECK, R. F. Alternative

routes in road networks. ACM Journal of Experimental Algorithmics 18 (2013), 1.3:1–1.3:17.
doi:10.1145/2444016.2444019.

JOSIS, Number 26 (2023), pp. 27–52

http://dx.doi.org/10.1145/2444016.2444019

50 HASHEM ET AL.

[2] AKGÜN, V., ERKUT, E., AND BATTA, R. On finding dissimilar paths. European Journal of Opera-
tional Research 121, 2 (2000), 232–246. doi:10.1016/S0377-2217(99)00214-3.

[3] BADER, R., DEES, J., GEISBERGER, R., AND SANDERS, P. Alternative route graphs in road
networks. In Proc. International ICST Conference on Theory and Practice of Algorithms in (Computer)
Systems (2011), pp. 21–32. doi:10.1007/978-3-642-19754-3_5.

[4] CEIKUTE, V., AND JENSEN, C. S. Routing service quality - local driver behavior versus rout-
ing services. In Proc. International Conference on Mobile Data Management (2013), pp. 97–106.
doi:10.1109/MDM.2013.20.

[5] CHANG, C.-W., CHEN, C.-D., AND CHUANG, K.-T. Queries of k-discriminative paths on road
networks. Knowledge and Information Systems (2019), 1–30. doi:10.1007/s10115-019-01397-4.

[6] CHEN, Z., SHEN, H. T., AND ZHOU, X. Discovering popular routes from trajec-
tories. In Proc. IEEE International Conference on Data Engineering (2011), pp. 900–911.
doi:10.1109/ICDE.2011.5767890.

[7] CHONDROGIANNIS, T., BOUROS, P., GAMPER, J., AND LESER, U. Alternative routing: k-
shortest paths with limited overlap. In Proc. ACM SIGSPATIAL International Conference on Ad-
vances in Geographic Information Systems (2015), pp. 68:1–68:4. doi:10.1145/2820783.2820858.

[8] CHONDROGIANNIS, T., BOUROS, P., GAMPER, J., AND LESER, U. Exact and approximate al-
gorithms for finding k-shortest paths with limited overlap. In Proc. International Conference on
Extending Database Technology (2017), pp. 414–425. doi:10.5441/002/edbt.2017.37.

[9] CHONDROGIANNIS, T., BOUROS, P., GAMPER, J., LESER, U., AND BLUMENTHAL, D. B.
Finding k-dissimilar paths with minimum collective length. In Proc. ACM SIGSPATIAL
International Conference on Advances in Geographic Information Systems (2018), pp. 404–407.
doi:10.1145/3274895.3274903.

[10] CHONDROGIANNIS, T., BOUROS, P., GAMPER, J., LESER, U., AND BLUMENTHAL, D. B.
Finding k-shortest paths with limited overlap. The VLDB Journal 29, 5 (2020), 1023–1047.
doi:10.1007/s00778-020-00604-x.

[11] DAI, J., YANG, B., GUO, C., AND DING, Z. Personalized route recommendation using big
trajectory data. In Proc. IEEE International Conference on Data Engineering (2015), pp. 543–554.
doi:10.1109/ICDE.2015.7113313.

[12] ERKUT, E., TJANDRA, S. A., AND VERTER, V. Chapter 9 hazardous materials transportation. In
Transportation, vol. 14 of Handbooks in Operations Research and Management Science. Elsevier, 2007,
pp. 539–621. doi:10.1016/S0927-0507(06)14009-8.

[13] ERKUT, E., AND VERTER, V. Modeling of Transport Risk for Hazardous Materials. Operations
Research 46, 5 (1998), 625–642. doi:10.1287/opre.46.5.625.

[14] GUO, C., YANG, B., HU, J., AND JENSEN, C. S. Learning to route with sparse trajec-
tory sets. In Proc. IEEE International Conference on Data Engineering (2018), pp. 1073–1084.
doi:10.1109/ICDE.2018.00100.

[15] HASHEM, T., HASHEM, T., ALI, M. E., AND KULIK, L. Group trip planning queries in spa-
tial databases. In International Symposium on Spatial and Temporal Databases (2013), pp. 259–276.
doi:10.1007/978-3-642-40235-7_15.

[16] ISLAM, F. T., HASHEM, T., AND SHAHRIYAR, R. A privacy-enhanced and personalized safe
route planner with crowdsourced data and computation. In Proc. IEEE International Conference
on Data Engineering (2021), pp. 229–240. doi:10.1109/ICDE51399.2021.00027.

[17] JONES, A. H. Method of and apparatus for generating routes (US patent 8,249,810), August
2012.

www.josis.org

http://dx.doi.org/10.1016/S0377-2217(99)00214-3
http://dx.doi.org/10.1007/978-3-642-19754-3_5
http://dx.doi.org/10.1109/MDM.2013.20
http://dx.doi.org/10.1007/s10115-019-01397-4
http://dx.doi.org/10.1109/ICDE.2011.5767890
http://dx.doi.org/10.1145/2820783.2820858
http://dx.doi.org/10.5441/002/edbt.2017.37
http://dx.doi.org/10.1145/3274895.3274903
http://dx.doi.org/10.1007/s00778-020-00604-x
http://dx.doi.org/10.1109/ICDE.2015.7113313
http://dx.doi.org/10.1016/S0927-0507(06)14009-8
http://dx.doi.org/10.1287/opre.46.5.625
http://dx.doi.org/10.1109/ICDE.2018.00100
http://dx.doi.org/10.1007/978-3-642-40235-7_15
http://dx.doi.org/10.1109/ICDE51399.2021.00027
http://www.josis.org

REPRESENTATIVE DISSIMILAR PATH QUERIES 51

[18] KRIEGEL, H., RENZ, M., AND SCHUBERT, M. Route skyline queries: A multi-preference path
planning approach. In Proc. IEEE International Conference on Data Engineering (2010), pp. 261–272.
doi:10.1109/ICDE.2010.5447845.

[19] LI, L., CHEEMA, M. A., ALI, M. E., LU, H., AND TANIAR, D. Continuously monitoring al-
ternative shortest paths on road networks. Proceedings of the VLDB Endowment 13, 11 (2020),
2243–2255. doi:10.14778/3407790.3407822.

[20] LI, X., CONG, G., AND CHENG, Y. Spatial transition learning on road networks with deep
probabilistic models. In Proc. IEEE International Conference on Data Engineering (2020), pp. 349–
360. doi:10.1109/ICDE48307.2020.00037.

[21] LIU, H., JIN, C., YANG, B., AND ZHOU, A. Finding top-k shortest paths with di-
versity. IEEE Transactions on Knowledge and Data Engineering 30, 3 (2018), 488–502.
doi:10.1109/TKDE.2017.2773492.

[22] NEWSON, P., AND KRUMM, J. Hidden markov map matching through noise and sparseness.
In Proc. ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems
(2009), pp. 336–343. doi:10.1145/1653771.1653818.

[23] PAPADIAS, D., ZHANG, J., MAMOULIS, N., AND TAO, Y. Query processing in spatial net-
work databases. In Proc. International Conference on Very Large Data Bases (2003), pp. 802–813.
doi:10.1016/B978-012722442-8/50076-8.

[24] SAMET, H., SANKARANARAYANAN, J., AND ALBORZI, H. Scalable network distance brows-
ing in spatial databases. In Proc. ACM SIGMOD International Conference on Management of Data
(2008), pp. 43–54. doi:10.1145/1376616.1376623.

[25] SOMA, S. C., HASHEM, T., CHEEMA, M. A., AND SAMROSE, S. Trip planning queries with
location privacy in spatial databases. World Wide Web 20, 2 (2017), 205–236. doi:10.1007/s11280-
016-0384-2.

[26] TIAN, Y., LEE, K. C. K., AND LEE, W. Finding skyline paths in road networks. In
Proc. ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems
(2009), pp. 444–447. doi:10.1145/1653771.1653840.

[27] WANG, J., WU, N., ZHAO, W. X., PENG, F., AND LIN, X. Empowering A* search al-
gorithms with neural networks for personalized route recommendation. In Proc. ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining (2019), pp. 539–547.
doi:10.1145/3292500.3330824.

[28] WANG, J., WU, N., AND ZHAO, X. Personalized route recommendation with neural network
enhanced A* search algorithm. IEEE Transactions on Knowledge and Data Engineering (2021).
doi:10.1109/TKDE.2021.3068479.

[29] WANG, Y., LI, G., AND TANG, N. Querying shortest paths on time dependent road networks.
Proceedings of the VLDB Endowment 12, 11 (2019), 1249–1261. doi:10.14778/3342263.3342265.

[30] WEI, L., CHANG, K., AND PENG, W. Discovering pattern-aware routes from trajectories. Dis-
tributed Parallel Databases 33, 2 (2015), 201–226. doi:10.1007/s10619-013-7139-1.

[31] WEI, L., ZHENG, Y., AND PENG, W. Constructing popular routes from uncertain trajectories.
In Proc. ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (2012),
pp. 195–203. doi:10.1145/2339530.2339562.

[32] YUAN, J., ZHENG, Y., XIE, X., AND SUN, G. Driving with knowledge from the physical world.
In Proc. ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (2011),
pp. 316–324. doi:10.1145/2020408.2020462.

[33] YUAN, J., ZHENG, Y., ZHANG, C., XIE, W., XIE, X., SUN, G., AND HUANG, Y. T-drive: driv-
ing directions based on taxi trajectories. In Proc. ACM SIGSPATIAL International Conference on
Advances in Geographic Information Systems (2010), pp. 99–108. doi:10.1145/1869790.1869807.

JOSIS, Number 26 (2023), pp. 27–52

http://dx.doi.org/10.1109/ICDE.2010.5447845
http://dx.doi.org/10.14778/3407790.3407822
http://dx.doi.org/10.1109/ICDE48307.2020.00037
http://dx.doi.org/10.1109/TKDE.2017.2773492
http://dx.doi.org/10.1145/1653771.1653818
http://dx.doi.org/10.1016/B978-012722442-8/50076-8
http://dx.doi.org/10.1145/1376616.1376623
http://dx.doi.org/10.1007/s11280-016-0384-2
http://dx.doi.org/10.1007/s11280-016-0384-2
http://dx.doi.org/10.1145/1653771.1653840
http://dx.doi.org/10.1145/3292500.3330824
http://dx.doi.org/10.1109/TKDE.2021.3068479
http://dx.doi.org/10.14778/3342263.3342265
http://dx.doi.org/10.1007/s10619-013-7139-1
http://dx.doi.org/10.1145/2339530.2339562
http://dx.doi.org/10.1145/2020408.2020462
http://dx.doi.org/10.1145/1869790.1869807

52 HASHEM ET AL.

0

10

20

30

40

50+

0 20 40 60 80 100
m

Vertex Coverage (%)

(a) L:(0km-5km]

0

10

20

30

40

50+

0 20 40 60 80 100

m

Vertex Coverage (%)

(b) L:(5km-10km]

0

10

20

30

40

50+

0 20 40 60 80 100

m

Vertex Coverage (%)

(c) L:(10km-∞]

Figure 9: Vertex coverage (%) by each RDP set vs. m

A Appendix

A.1 Vertex coverage of RDPs vs. top m shortest paths

In Figure 9, a point represents the vertex coverage (%) achieved by each RDP set and the
value of m for the required top shortest paths. We observe that there is no specific correla-
tion between m and the percentage of vertex coverage.

www.josis.org

http://www.josis.org

	Introduction
	Related work
	Alternative and diversified path queries
	Path learning and recommendation

	Problem formulation
	Representative paths
	Representative dissimilar path (RDP) queries
	Similarity measure
	A flexible framework

	Our approach
	Representative path computation
	Representative dissimilar path set computation
	Lower bounds
	Upper bounds
	Algorithms

	Experiments
	Effect of the number of representative paths k
	Effect of features
	Effect of trip length
	Effect of context
	Representative dissimilar paths vs. shortest paths
	Summary

	Conclusion
	Appendix
	Vertex coverage of RDPs vs. top m shortest paths

