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Abstract: Coordinating and managing teams searching for missing persons in wilderness
areas is challenging. Local terrain characteristics and environmental conditions strongly
influence how searchers accomplish their search tasks. When making decisions, searchers
consult various maps of the area. In this paper we proposed a methodology for mapping
characteristics of the area that influence user behavior when walking the area, and define a
walkability model of the terrain. We define walkability as a measure of how fast a person
can walk through terrain. The observed walking speed depends on factors such as the
fitness and motivation of a person walking through the terrain, as well as on assistive fea-
tures and the configuration of the terrain. In our method, walkability is predicted only as a
feature of terrain configuration. We used singular value decomposition (SVD) to transform
datasets to extract latent features of the terrain and users from multiple Global Positioning
System (GPS) trails. We define the walkability measure as a latent component of walking
speed, which is a function of terrain features. Finally, we use a polynomial regression algo-
rithm to build a model for predicting terrain walkability based on remote sensing imagery
from the Sentinel-2 mission. The application of the proposed model is demonstrated in the
Kozjak mountain region in the Republic of Croatia.
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1 Introduction

Spatial data play an important role in missing person search planning [7]. Decisions usu-
ally depend on the use of spatial data in combination with other data, such as movement
speed [41] and personal characteristics, behavioral profiling [40] or the condition [21] of
the missing person, which can greatly facilitate the planning of missing person searches
included in search and rescue campaigns (SAR). This also applies to spatial data such as
land use features or terrain interpretation. This problem is particularly pronounced in un-
inhabited and isolated terrain, which is often not mapped up to date in accordance with
monthly natural changes in the environments, such as wilderness.

Coordinating and leading teams searching for missing persons in wilderness is chal-
lenging [15]. Local terrain features [10] and environmental conditions greatly influence
how searchers accomplish their search tasks. The wilderness characteristics make such
areas heterogeneous, and it is hardly possible to decide how much time straight forward
is needed to walk over that terrain without spatial interpretation. Many studies today
have focused on classifying the behavior of lost individuals based on the speed of their
movements. However, one of the most common categorizations of movement in search
and rescue (SAR) is walking speed by age [46]. Therefore, the index set for the movement
distance factor uses age-specific walking speed as defined in [39].

There are numerous studies on the walkability of urban areas [42], for example in the
context of urban policy, planning [31], or investment [11]. Here, the input parameters for
calculating walkability are differ from those in the wild, i.e., more input data are avail-
able (infrastructure data, green areas, street design, sight distance etc.). The calculation of
walkability in the wild is specific, i.e. no parameters such as terrain characteristics may
be omitted. We can better estimate the movement of individuals in the wilderness by con-
sidering terrain characteristics such as slope [44] on typical terrain or even according to
Naismith’s rule [16]. However, information about how far a given person can walk in pre-
defined time is critical when people are lost or have an accident. Therefore, SAR operations
conducted by search and rescue teams are critical in these situations [25]. When a missing
person incident is reported, a team critically assembles and conducts SAR activities to find
the location of the lost person [45]. Each such activity is individual and has its challenges,
but the experience of the SAR team and team leader [2] can be an advantage in critical
situations [36]. SAR Team members are tasked with searching a specific area, and the team
leader leads the effort based on simultaneously provided information [2].

One way to make information available is through the decision support system (DSS).
DSS can be useful for faster and optimal disaster response planning by providing sug-
gestions based on data, models, and artificial intelligence [33]. One of the SAR situations
is the obvious benefit of using artificial intelligence in decision support systems related
to missing person management [22]. In such situations, a quick response is required for
the search to be successful, which can be supported by prepared models from large data
sets [3]. Recommender systems are a machine learning-based technique commonly used
in industry to match users with items that the system assumes they would like. In [28], the
authors propose a method for a recommender system based on matrix factorization. This
method is also the engine behind the award-winning Netflix algorithm [27]. However, this
algorithms usefulness stretches beyond movie recommendations. An application of matrix
factorization methods to spatial data is also described in [1]. The authors used SVD-based
PCA to derive principal components for burned area assessment from remote sensing data.
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The increasing availability of remote sensing data, such as satellite imagery, is being used
to obtain highly detailed information about the terrain. Several studies have focused on
the evaluation of environmental models, such as green spaces and urban areas that affect
walkability. For example, in [32], the authors propose a method for walkability of urban
green spaces using Advanced land observing satellite (ALOS) data, while in [43], the au-
thors also used ALOS satellite imagery, but for implementing a user-friendly walkable area
detection assistance system, where they calculate the green space index based on the spec-
tra recorded in the satellite data. However, the available literature neglects the problem of
mapping walkability in wilderness, even though a walkability map could be an important
component of many GIS based decision support systems, not only for lost person search
and rescue, but also for many other activities that take place in wilderness, such as hiking,
hunting, afforestation planning, pasture planning, and the like.

According to SAR [9], the initial planning point (IPP) is the starting point around which
a search is planned. If known, it is the point where the lost person was last seen. In the
literature, it is also referred to as the point last seen (PLS) [2]. Knowledge of terrain features
that affect walkability is necessary for assessing search zones and can be extremely useful
in planning search operations. Knowledge of walkability can be beneficial in predicting
the distance the missing person could have traveled in the time since they went missing.
This distance is used to define the search radius. Knowing the time it will take searchers to
traverse the area helps SAR managers plan activities and manage personnel. Both values—
the distance the missing person could walk and the time it takes searchers to walk—are
functions of walkability. However, the speed of walking is individual. If we consider the
speed of movement GPS data [41] from past SAR campaigns and the characteristics of
the terrain using satellite imagery, we could obtain a more complete and comprehensive
picture of terrain accessibility or walkability as one of the parameters of SAR planning.

In this paper, we propose a novel approach to use multiple trails for evaluating the
accessibility of a terrain. The mathematical tool of matrix factorization allows us to divide
the walkability achieved on a terrain into two factors: Factor of the terrain and Factor of the
user, which are latent values. The proposed method represents a novel algorithm that uses
the behavior of multiple users on multiple instances of a terrain to describe the features
of the terrain associated with the user’s possible behavior. Unlike traditional approaches
where authors rely on average user behavior, we extract latent values of the terrain that
may be indicative of user behavior. In addition to proposing the new method, the contri-
bution of this paper is a map of walkability values of the study area obtained by training a
walkability prediction model using surface reflectance measured by satellite observations
and topography data. Thus, in this paper, we propose an approach based on latent spatial
transformation to evaluate the walkability of the terrain, which is crucial for determining
the most likely search area using a decision support system. We used singular value de-
composition (SVD) for a dataset transformation and a polynomial regression algorithm to
predict the terrain walkability using remote sensing images from the Sentinel-2 mission.

This article is organized as follows. First, we introduce the terrain walkability charac-
teristic of the study area and use a data set which consists of digital trails, DEM map and
Sentinel-2 imagery. Second, we describe used methods related to GPS preprocessing, latent
value extraction using the singular value decomposition and latent value prediction from
remote sensing data. Finally, in the 4 and 5 sections, we summarize, analyze, and discuss
the results for assessing the walkability of the terrain. The final section draws conclusions
and presents plans for future work.
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2 Materials

2.1 Study area

The study area for this research is the northern slope of the Kozjak mountain (Figure 1).
Kozjak is one of the longest continuous ridges in the Republic of Croatia. This area is not
inhabited, its slopes are not so steep and form a plateau that gradually descends towards
the Dalmatian Zagora. Below the very steep and difficult to access southern slopes is the
town of Kastela with over 40,000 inhabitants [26].

Depending on which side we look at, different natural biotopes characterize Kozjak. In
the north of Kozjak, widespread hazmophytic rock vegetation called Dalmatian limestone
develops in the cracks of the dry limestone cliffs. The deciduous species of white hornbeam
and black hornbeam, which characterize the sub-Mediterranean flora, are also prevalent in
this area. On the southern slopes of Kozjak, the forest community of Aleppo pines and
holm oaks, as well as broom and moss, is pronounced [8].

Near the study area are rural areas with sparse population and mostly abandoned agri-
cultural land. The reason for selecting this particular area is its biodiversity and topo-
graphic diversity. In this area there are both uphill and downhill sections covered with
different vegetation. The selected area is close to settlements, but is still natural and un-
inhabited, and is only occasionally visited by hikers and cyclists. In the recent past, there
have been four missing persons cases and, accordingly, search and rescue operations have
been carried out in this area, archiving the traces of the searchers GPS. However, we will
not discuss the missing persons cases due to data confidentiality. The area was searched
many times by multiple searchers and search dogs and we obtained dense walking trails.
This makes the area suitable for analysis.

2.2 Walking trails

We collected a dataset made of a digital map provided by the Croatian Mountain Rescue
Service (CMRS) and collected from random incidents of lost people SAR. We used a digital
trail map based on GPS technology for this research. We used GPS tracking exported to
GPX (GPS eXchange), the standard XML data format for digital trails. The anonymized
data from real SAR missions consist of GPX trail: points, each with associated geocoordi-
nates (latitude and longitude), altitude and time. The provided GPS dataset consists of 153
.gpx files with 126481 segments. The total walked length of the trails was 816377 m. The
time span of SARs for a lost person refers to seven dates in 2018 and one in 2019. Each
trail file was associated with a user based on the file name. The file name was manually
assigned by the search and rescue team member responsible for mapping. The file name
consists of the name, last name, or nickname of the person who owns the GPS device and a
number to make the file unique. We’ve found that there are files with the same user name
but created at different times.

2.3 Digital maps

Digital elevation maps (DEM) contain a variety of information to represent basic topo-
graphic features [29]. From untreated DEM, we can derive additional terrain features use-
ful for defining search performance and mobility models [20]. We consider the slope within
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Figure 1: The northern slope of the Kozjak Mountains in the Republic of Croatia was se-
lected as the study area for this study. The orange rectangle indicates the spatial extent of
the results shown in Figure 7.

these derived features, computed as a function of the maximum rate of change between
adjacent points. In our work we used European digital elevation model (EU-DEM) [13],
version 1.1 which is available as a raster 32 bit GeoTiff file and with spatial resolution of 25
m.

2.4 Sentinel-2 imagery

The type of surface coverage of the terrain can be estimated from multispectral images.
Various types of cover absorb various portions for each wavelength of the light, surface
reflectance of multiple bands can be used to estimate land cover features. In this study,
we selected freely available images captured by satellite mission Sentinel-2. Sentinel-2 is
a European earth polar-orbiting satellite constellation consisting of two identical satellites
Sentinel-2A and Sentinel-2B flying on a single orbit plane but phased at 180°. Each of these
satellites hosts a multi-spectral instrument (MSI), which covers the visible to the shortwave
infrared spectral range. This mission provides high-resolution imagery for the global and
sustained monitoring of Earth land and coastal areas with a high revisit frequency of 5 days
[19]. MSI sensor delivers 13 spectral bands which are listed in Table 1 with different central
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wavelengths, widths and spatial resolutions (10 m, 20m and 60m) [12]. According to [38]
Sentinel-2 provides high-resolution satellite data which has been successfully applied to
land cover/use, both for monitoring and classification. Furthermore, each spectral band
has its own purpose where [14, 30]:

e B01 is often used for retrieving coastal aerosol,

e B02, B03, and B04 are standard blue,green and red channels, where e.g. B02 is sensi-
tive to vegetation senescing, B03 is sensitive to total Chl-a in vegetation, and B04 is
used for maximum Chl-a absorption,

e BO05, B06, B07, B08,and B8a are vegetation bands, suitable for mapping shorelines,
biomass content, detecting /analyzing vegetation and atmospheric corrections,

e B09 is used for water vapour absorption,

e B10 is used for detection of thin cirrus (atmospheric correction),

e Bl11 and B12 are useful for measuring the moisture content of soil and vegetation, also
they are used for snow, ice, and cloud separation.

Spectral

band B01 B02 B03 B04 BO05 B06 B07 B08 B8a B09 B10 B11 B12

Central
wavelength 443 490 560 665 705 740 783 842 865 945 1375 1610 2190
A (nm)

Spectral

width A(nm) 20 65 35 30 15 15 20 115 20 20 30 90 180

Spatial

. 60 10 10 10 20 20 20 10 20 60 60 20 20
resolution (m)

Table 1: Sentinel-2 spectral bands specifications.

3 Methods

3.1 GPS preprocessing

Trails were processed and transformed into segments. A segment describes the walk be-
tween two points, and each segment is defined with start and end points and start and end
times. Using this information, we can easily calculate the necessary features of a segment,
such as the length of the trail, the slope of the terrain (if elevation above sea level is available
for the start and end points), and the speed of walking the segment. In this work, however,
the information about the slope was not calculated from the GPS trails, but by processing
DEM.

The data was filtered for inconsistencies. In the cases where the device was turned off
and on again, there was a long period of time between two points. This can also happen
when the signal is lost due to the terrain of the test area. Therefore, we excluded all seg-
ments where the time difference between two points was more than one minute and the
distance between two points was more than 30m. Each trail was saved as a file. The file
name of the trail was composed of the date it was recorded, the name of the person hold-
ing the device, and a number that made the file name unique because there were multiple
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missions. If the device was attached to a search dog, the name also included the word
“pas” (Croatian for dog). The numbers were not consecutive, but were randomly assigned,
which only made the file name unique. There were 153 different files with unique names.
We processed the string with the file name, removed the numbers from the string, and
found 74 unique names. For a terrain instance, we calculated the speed score for each user
by calculating the average speed of all segments within the terrain instance.

Convert
namesto [ Users
users

Walking
trails

Calculate
Convert Calculate ASSIQD a each user T
to > walking |-» terrain .| speed score .
: ) instances
segments speed instance to on a terrain
each segment instance

Figure 2: Pre-processing walking trails to obtain speed score for each user on visited terrain
instances.

3.2 Latent value extraction with SVD

A mathematical construct that directly reveals the rank and corresponding ideal basis of a
dataset is the singular value decomposition (SVD) [37]. The SVD of a matrix is a factoriza-
tion of that matrix into three matrices.

A=UxVT 1)

Where A represents the matrix to factorize with m rows and n columns, U is a mxm
matrix that consists of eigenvectors of AAT V matrix is a matrix nxn matrix of eigenvectors
of AT Aand ¥ is a diagonal matrix of singular values of A. Practical usage of SVD originates
from the fact that for a dataset in n-dimensional space, for any k < n, the SVD will show the
ideal basis for representing that data using only k dimensions. If the SVD reveals that the
dataset is full rank and no feature reduction is possible along the calculated axes, then no
axes exist for which a reduction is possible. Practical usage of SVD for the transformation
of matrix A would include the following semantics: A= matrix of data to be transformed,
rows of matrix A represents unique users columns of matrix A correspond to unique items
elements of matrix A are denoted with a,, ; and represent users u rating of item and i SVD
transformation of a matrix. A will reveal such subspace, often referred to as latent space,
where users and items can be described with fewer features. Particularly, matrix product
UX performs transformation of users to latent space and XV performs transformation of
items in latent space.

SVD and matrix factorization is the basis for many recommender systems. A recom-
mender system is a technique for predicting user rates on items based on previous user
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ratings. User rating matrix is a typical sparse matrix holding only a limited number of non-
zero item ratings for each user. A matrix factorization-based recommender system builds
a model for both—users and items. Finally, the recommender system uses reported ratings
from similar users to recommend items to a user. The intuition behind this work is that
variables can describe both users and items in latent space for building predictions.In our
work, we use algorithms typically used for predicting user rating on movies [27], in this
case for predicting users” walking speed on a terrain segment. In this work we will use im-
plementation of the algorithm proposed by Funk [17] as the most common recommender
system algorithm. Prediction of user ratings for the item (r,;) of the algorithm is expressed
as:

Tui = f+ by + b + g} Py 2)

where 1 is total bias, b, is a user bias, b; is item bias and ¢; is a vector of an item repre-
sented in latent space and p,, is user latent space representation. In other words, b,, and p,,
are parameters associated with the user model, while b; and ¢; are parameters associated
with the item model. To implement the latent space model for the terrain, we expressed
our data set in the form of matrix A. Rows of matrix A represent the users walking the
terrain, and columns are different segments of 30m length. The reason for selecting 30m
length of a segment is a trade off between resolution of the resulting walkability map we
are aiming to build and resolution of input data. As shown in Table 1 resolution of satellite
data ranges from 10m to 60m, while resolution of DEM data is 30m. Thus 30m was selected
to be the resolution of the walkability map.

Values of matrix A, instead of ratings , are filled in with the walking speed score. In
most cases, GPS track contains more precise data and records points closer than 30m that
compose a terrain instance, so we calculate the median speed of walking of the observed
user. Speed score is the median speed of walking of the observed user in the terrain in-
stance. The constructed matrix is sparse. We use the implementation of the SVD prediction
algorithm provided by [23]. We used a prepared data set to train all factors from equation
(2) and that is p, by, pu, b, and ¢;. The calculated factors are used for prediction of ratings
of known users for known items and for filling the sparse matrix A with unknown values.
However, the algorithm we used was critiqued by [18] for its instability, mostly due to a
phenomenon called ‘popularity bias” where popular items are rated more often, while un-
popular items are rarely rated. However, due to the nature of our dataset, we can plausibly
excluded the popularity bias. Unlike hikers and climbers who only walk on trails, rescuers
walk on both accessible trails and inaccessible terrain in search of the lost person.

To test the stability of the results, we performed iterative training cycles in which we
varied the parameters of the algorithm and compared the resulting factors. We did not find
any significant differences between the factors as a function of the initialization values.

3.2.1 Definition of walkability

From the five factors obtained from the dataset, we select only those associated with the
terrain instance features. We define walkability as the sum of values of the y, b;, and g;
factors.

e The factor 1 can be understood as an average value for walking speed, to which we

can add or subtract the terrain and user components of walking speed. This factor is
the same for the entire data set—regardless of terrain instance and user.
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o The factor b; is the item bias (often referred to as intercept) of the speed of walking
on the terrain instance. b; factor is a feature of the terrain instance representing the
average difference (can be positive or negative) of the speed of walking on the specific
terrain instance and average speed of walking of the whole dataset x.

e The ¢; factor is the factor that needs to be multiplied by the user factor in order to
predict the speed of the specific user on the terrain instance.

To define a value that quantitatively describes the walking speed possible in the terrain
independent of the user, we calculate the walkability value as the sum of y, b;, and ¢;.

w=p+b+gq 3)

It's important to understand that the walkability value is not the average walking speed,
but the part of the possible speed that depends only on the terrain features. Depending on
the user and terrain characteristics, the walking speed may be increased on certain sections
of the terrain for one user and decreased on others. We do not assume which features of the
terrain define walkability and which features of the users are described in the latent space.
Therefore, we consider walkability as the walking speed of an unspecified user. In this part
of the methodology, we’re concerned with measuring the value of walkability using sev-
eral existing trails. Our evidence for walkability is the walking speed of multiple users. We
extract from multiple users’ trails only the part of walkability that depends on the terrain.
Some users walk faster on the terrain, others slower, but this depends on the user charac-
teristics. The user characteristics are neglected in the rest of the analysis because we’re only
concerned with predicting the walkability of the terrain. However, for the prediction of the
user’s walking speed, we’ll also use the user’s biases and factors.

C Terrain instances )

users
speed m {b bu % bi {b qu 83 ai
score on

Users

the terrain

walkability

Figure 3: Extracting walkability values as latent values from the speed score matrix of users
and terrain instances.

The values of the extracted walkability are shown in Figure 4. The value of walkability
is expressed as a numerical value without units. Since it represents the latent value of
the walking speed matrix, in order to predict the speed of walking the terrain, walkability
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needs to be multiplied with users’ latent value. Thus, we expect the value of walkability to
be higher on smooth flat terrain and lower on the rough inclined terrain. From the figure, it
can be seen that the roads have a higher walkability value, while the mountain peaks have
a low walkability value.

43°38'

43°36'

43°34'

16°20'
Walkability  Elevation (m)
5 1840

Figure 4: Walkability values shown on map.

Walkability is extracted only for terrain instances covered by trails. We see that the
walkability value is higher on roads than on dense terrain.
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3.3 Latent value prediction from remote sensing data

Using the method described earlier, we extracted the quantitative walkability value of
trails. As can be seen in Figure 4, the known values are assigned to the walked segments of
the terrain, but only for the parts of the terrain that were walked by the users whose trails
were available to us.

To obtain the map of the entire terrain, we need a walkability prediction model that can
be applied to the entire map. Our hypothesis is that the walkability of the terrain depends
mainly on the surface conditions and the topography of the terrain. Therefore, we use two
available data sources that can be associated with the two sets of features.

We downloaded high-quality band images for date 02-04-2021 from the Sentinel Hub
EO browser, except for the band image for B10, which was not available at the time of
writing. Cloud cover for the scene is 15.7%, but there are no clouds over the study area. All
images are in .tiff format. For each terrain, we extracted 12 associated values—one value
for each band. In addition, we extracted the context of each cell by calculating the average
value of the band of surrounding cells with radius three.

The terrain topography was extracted from the digital elevation model. We calculated
the slope of the terrain for each cell under study—a terrain instance and used the value
as an additional feature of the terrain. The slope value was not taken as an angle, but in
accordance with [44] we calculated the slope factor:

slope factor = 351z +0.05| (4)
where dh is the maximum difference in height above sea level between start and end point
in the cell, and dx is the length of the segment.

Finally, we obtained the dataset constructed from:
12 band values | 12 average band values | slope factor | w

3.3.1 Polynomial regression model

The relationship between the selected and measured walkability was not linear, so we used
polynomial regression as a model to predict walkability based on 12 band values, 12 aver-
aged band values, and the slope factor value.

Polynomial regression [35] is a form of regression analysis in which the relationship
between the independent variable x and the dependent variable y is assumed to be curva-
ture, so it is modeled as an n-th degree polynomial in x. In multiple polynomial regression
a dependent variable y depends on multiple independent variables z,, x5 4Ae z,,.

Multiple polynomial regression is performed by calculating polynomial features and
then applying linear regression for predicting the dependent variable from multiple inde-
pendent variables.

Polynomial features are calculated as n-th product of each variable, i.e., for the two
variables z; and z2 polynomial features of order two would be: (z;,z2) —> (v1,m9,02,23,
T1*22)

Polynomial features of order two were calculated from 25 available features. With this
expansion of polynomial features, we are able to develop a more sophisticated model and
fit the coefficients of polynomial regression to the obtained values of walkability.

The formula for predicting the walkability value of a terrain instance depends on the
Sentinel-2 reflectance of all bands and the topography. After fitting the formula, the feature-
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dependent values can be easily obtained for the whole area, not only for the terrain in-
stances for which we have walkability values.

By applying the raster calculation formula to the entire map, we obtain a map of walk-
ability, including the parts of the area that have not been walked.

4 Results

The dataset obtained from the search and rescue authority contained 153 walking trails
inside the study area. The files were analysed, and we identified 74 different subjects in the
filenames. The trails were processed, and transformed into the list of segments of walking
between two points, and we calculated the speed of walking between the two points in the
segment. This resulted in 126481 segments.

We created a grid of terrain instances with 30m cell size (30m30m). Each segment be-
longed to one terrain instance. We calculated for each subject its median speed (expressed
in km/h) inside the terrain instance cell to represent the speed score. This resulted in 32619
instances of speed scores each associated to one user on one terrain instance.

With this data we performed SVD in order to calculate parameters of the SVD model:
Ky bu/ Pus bi/ and q;-

The trained SVD model was evaluated using root mean square error (RMSE) and mean
absolute error (MAS). The RMSE score of the trained model was 1.378 and MAE score
0.804. We calculated walkability from the trained model parameters as defined in Equation
3. With our analysis we obtained the measure of walkability for 21139 terrain items with
30m cell size. Walkability values, calculated according to the equation 3, ranged from 0 to
7, with the majority of segments having walkability between 1 and 3. The distribution of
values is shown in Figure 5. The lower values of walkability are assigned to terrain that is
barely walkable, and the higher values are assigned to accessible terrain.

14000

12000 1

10000 1

8000 4

G000 4

4000 -

2000 4

Figure 5: Distribution of walkability values calculated from walking trails in the study area.
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When we compared the calculated walkability on terrain instances with a map, we no-
ticed the walkability is higher in the cells with roads, and lower on slopes of the mountain,
as can be seen on Figure 4.

In the next step we created a dataset for training a predictive model of walkability. For
each terrain instance with cell size 30m we extracted the values of the 12 bands captured
with Sentinel-2 instruments. Besides the central pixel value, we extracted the average value
of the band in the surrounding cells with radius three. For each cell we calculated the
maximal slope from the digital elevation model. We calculated polynomial features of
order two to prepare a dataset for polynomial regression.

We split the dataset randomly into train and test portions with ratio 80:20. We trained a
polynomial regression model to predict the walkability from the Sentinel-2 bands, averaged
values of Sentinel-2 bands and a value calculated from the slope as described in Equation
4. The model was trained on 80% randomly selected data from the dataset.

For the trained model we calculated evaluation measures. Namely we used R? score,
and RMSE.

The R? score or coefficient of determination [5] evaluates the performance of a regres-
sion model. It is equal to the proportion of the dependent variable variance that can be
predicted from the independent variables and can be calculated as follows:

Diy (@i — vi)?
i (T = yi)?
where y; represents actual value of each sample, 7 is the mean value of actual variable
y; and z; represents predicted values.
RMSE is a metric for showing uncertainty in a data set. It can be interpreted as average
mean square error between the predicted value and actual value [24]:

R*=1- (5)

(6)

where 7 represents the number of samples, y; is the actual value of each sample and z;
is predicted value.

The trained model results: R? score for train set 0.165, and R? score for test set 0.099.
RMSE measure for the train set was 0.301 and 0.388 for the test set. The R? score is positive,
but not close to the ideal value of 1, so the results of the R? value do not show a strong
correlation between the measured and predicted values. On the other hand, the RMSE
value is relatively low, showing that the error of the predicted values has, on average,a
small difference from the observed values. Looking at the error plot shown in Figure 6
we can see that the model underestimates the walkability of the terrain instance where the
walkability is higher than 3 and predicts values from the range between 1 and 3, which is
the range where most of the observed values were. However, we can see that the predic-
tion follows the same trend as the observed values. This means that the prediction model
predicts values that are incorrect in absolute values, but in the majority of cases predicts
higher values for walkable segments, and low values for inaccessible segments. To test this
hypothesis, we compared the prediction of the model with different classes of land cover
of the study area.

Finally we used the obtained model for predicting walkability on the whole map of the
study area. Resulting map is shown in Figure 7. The map shows the predicted walkability
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Figure 6: Error plot showing the error of the model between observed walkability and
walkability predicted by our model for the obtained dataset.

for each pixel of the terrain. We can clearly distinguish roads and paths in the forest. The
areas near mountain tops and with large slopes have lower value of walkability.

For assessment of the produced walkability model, a land cover map was derived from
Sentinel-2 and OpenStreetMap (OSM) [34] data (Figure 7). Supervised random forest [4]
classification algorithm was used to classify the satellite data in six classes: grassland,
sparse vegetation, dense vegetation, soil, bare rock, and built-up. In order to improve
the satellite-derived land cover map, roads, and pathways were extracted from the OSM
dataset, rasterized, and overlayed to create the final map (Figure 7). We matched walk-
ability values with land cover classes for each pixel of the two maps, and the resulting
descriptive statistics are shown on (Figure 8).

The minimum walkability values were noted for sparse (0.9) and dense (0.8) vegeta-
tion, while maximum walkability for built-up (4.4) and sparse vegetation (4.6) classes. The
highest average walkability for the analysed area was for built-up (1.8) and bare rock (2.0)
classes. Sparse and dense vegetation exhibited the lowest average walkability of (1.6.). The
lowest range of walkability values had bare rock (1.4) and grassland (2.1) classes, and the
highest ranges were seen for built-up (3.3) and sparse vegetation (3.7) classes. Built-up
class had the highest standard deviation of walkability (0.3) and grassland had the lowest
(0.1).

5 Discussion
In the previous section, we presented a novel approach to using multiple digital trail maps
to assess the walkability of the terrain. The results are based on walking trails data obtained

from actual searches of lost people and terrain features obtained from remote sensing by
the Sentinel-2 mission.
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Figure 7: Walkability map for the Kozjak Mountains study area predicted by our model
(top image). The thin gray lines represent the 25-meter elevation contours. Land cover
map from Sentinel-2 and OpenStreetMap data (lower image).

We proposed a method to extract the walkability value as a latent value of the speed
score matrix obtained by SVD. We proposed an equation to define the walkability as the
sum of the terrain instance factors obtained by matrix factorization and calculated the walk-
ability for known terrain instances. The polynomial regression model was trained with the
values of the walkability of the known terrain to predict the walkability of the unknown
terrain. The final results are evaluated by calculating two common evaluation measures: R?
score and RMSE. The evaluation of the regression model showed a small R? value, which
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Figure 8: Chart with descriptive statistics of walkability values according to the land cover
classes shown in the Figure 7.

does not indicate a high correlation between the predicted and measured values. However,
the RMSE has a relatively small value, which means that, on average, the predicted value
and the observed value do not differ much in absolute value. The error plot shows that our
model sometimes underestimates the walkability value for observers with high walkabil-
ity, but generally predicts larger values from the range where most walkability values are
observed.

Even-though evaluation measures did not show our model has high accuracy, we do
not think this is the reason to reject this approach for future research. As we know, both the
SVD and polynomial models introduce errors into the prediction—the SVD model predicts
the speed score with an RMSE of 1.37, and the polynomial model predicts the walkability
with an RMSE of 0.30. If we also take into account that GPS devices measure the location
with precision that is not optimal, we must acknowledge that we introduce errors on three
levels (GPS measurement error, SVD transformation error, and polynomial regression er-
ror) and therefore cannot expect an accurate model. Since walkability, as we define it, is not
a precisely measurable feature, it is expected that the proposed model will not be quantita-
tively accurate. Walkability is defined as a latent value of speed score, and as such cannot
be measured directly. Speed score is calculated using GPS data, which is not precise. The
first model (SVD model) attempts to measure walkability using speed scores from multiple
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users. The second model (polynomial model) measures the same feature using satellite
data. Both models have errors, and therefore do not accurately predictthe values that were
measured. However, when we compare the map with the final results to what we expected,
we can observe that the predicted walkability value can distinguish between several classes
of walkability.

Despite the less than ideal evaluation measures, the walkability map calculated for the
entire study area gives us confidence that the model can be used to analyze the terrain (Fig-
ure 7). On the map, we can clearly identify roads and trails in the wilderness as areas with
higher walkability. Since we assume that such areas are more walkable, we can say that
this map can be used to evaluate the walkability of the terrain. Even though walkability is
not used to represent the speed of walking, but only the difficulty of walking over a given
terrain, and that is what this map does.

The walkability model can be used not only for planning the search for a missing per-
son, but also for a variety of experts and researchers using spatial data for their work,
without and with DSS integration. Walkability is an important feature to consider when
planning hiking, hunting, afforestation, pasture, firefighting, and other activities that in-
volve movement in wilderness.

As mentioned earlier, several studies aim to classify lost person behavior in terms of
the speed of their movement, and this is the practice used to plan lost person search [46].
When searching in wilderness and non-urban areas, it is important to consider the nature
of the terrain when planning the search [6] and determining the possible movement of the
missing person.

In contrast to traditional approaches, where authors rely on average user behavior, we
used the mathematical tool of matrix factorization, which allows us to divide the walking
speed achieved on a terrain into two factors: Factor of the terrain and Factor of the user. The
proposed method represents a novel algorithm that uses the behavior of multiple users on
multiple terrain instances to describe the characteristics of the terrain associated with the
possible behavior of the users.

Therefore, predictive models cannot be used to predict the location of the lost person,
but only as a probabilistic tool to determine the area of the terrain to be searched where
the probability of being found is high enough. In the context of this research, we consider
walkability as a measure of the nature of the terrain in a given direction of movement from
one point to another. Thus, the walkability of the terrain is a feature associated with a
portion of the earth’s surface that quantifies the potential walking speed.

When looking at the data from the digital trail maps used to calculate these maps, one
should consider the different movement speeds under different conditions. For example,
Figure 4 with the data from GPS shows that we had most of the data in locations with
convenient to walk, e.g., roads, where walking speed is likely to be highest, which then
correlated well with the maps from the satellite imagery. Therefore, the proposed model
can be integrated into DSS’s, but it should be considered that additional parameters should
be included in certain terrains. Apart from the fact that the proposed model can be used for
various GIS analyzes, it can also be implemented for other purposes and used for various
applications. However, it is necessary to test the application in terms of the level of detail
of the segments in order to improve the level of detail of the output maps.
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6 Conclusions

Using the problem of lost persons in the wilderness as an example, we developed a model
to improve search planning. We applied singular value decomposition (SVD) to a dataset
transformation and polynomial regression algorithm to predict terrain walkability using
remote sensing imagery from the Sentinel-2 mission.

We integrated a dataset created by collecting traces of different people who walked
through the terrain during the search for missing persons, the terrain slope, and Sentinel-2
remote sensing data. The application of the proposed model is presented in the Kozjak
mountain region in the Republic of Croatia. The results show that this approach can ade-
quately model the terrain. The application of maps created with this modeling approach
can be used for various purposes such as planning, forestry, mountaineering, scouting, de-
cision support systems, etc. Specifically for search and rescue operations, the walkability
map provides decision makers with information about the level of roughness of the terrain
in order to plan how fast the lost person might walk on that terrain and how fast searchers
can walk it. Walkability maps should be used in combination with the lost person model
at SAR to predict the lost person’s walking speed and behavior.

In this paper, we described a method to determine the latent value of the earth’s surface
from human behavior records. In addition, this paper proposed the methodology of divid-
ing the influence of terrain and user characteristics into latent values by using SVD decom-
position. The same method can be applied to other domains where user behavior varies
from user to user and on different terrain instances. In evaluating the proposed model, we
identified three levels at which errors occur and affect the final results. In future work, we
plan to focus on improving the model by addressing all three sources of error. GPS signal
variance estimation will be calculated to reduce the GPS error. To improve the walkability
measurement, we'll include trails from different user groups such as scouts and hunters.
We'll also look for additional terrain features to improve the walkability prediction model.
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