
JOURNAL OF SPATIAL INFORMATION SCIENCE

Number 24 (2022), pp. 115–156 doi:10.5311/JOSIS.2022.24.199

RESEARCH ARTICLE

Temporally relevant parallel top-k
spatial keyword search
Suprio Ray and Bradford G. Nickerson

Faculty of Computer Science, University of New Brunswick, Fredericton, Canada

Received: November 12, 2021; returned: March 29, 2022; revised: May 12, 2022; accepted: June 8, 2022.

Abstract: New spatio-textual indexing methods are needed to support efficient search and
update of the massive amounts of spatially referenced text being generated. Location
based services using geo-tagged documents provide valuable ranked recommendations
about nearby restaurants, services, sales, emergency events, and visitor attractions. Conse-
quently, top-k spatial keyword search queries (TkSKQ) have received a lot of attention from
the research community. Several spatio-textual indexes have been proposed to efficiently
support TkSKQ. Some of these indexes support updates based on live document streams,
but the ranking schemes employed by them do not simultaneously incorporate temporal
relevance, textual similarity and spatial proximity. Moreover, existing approaches have
limited or no capability to exploit parallelism with document ingestion and query execu-
tion. We present a parallel spatio-textual index, Pastri, to address the aforementioned is-
sues. Pastri can be updated incrementally over real-time spatio-textual document streams.
To support temporally relevant ranking of continuously generated document streams, we
propose a dynamic ranking scheme. Our approach retrieves the top-k documents that are
most temporally relevant at the time of a query execution. We implemented Pastri and we
integrate it within a system with a persistent document store and several thread pools to ex-
ploit parallelism at various levels. Experimental evaluation involving real-world datasets
and synthetic datasets (that we created) demonstrates that our system is able to sustain
high document update throughput. Furthermore, Pastri’s TkSKQ search performance is
one to two orders of magnitude faster than other spatio-textual indexes.

Keywords: spatial keyword search, spatio-textual, I/O-efficient indexing, top-k, temporal
relevance

© by the author(s) Licensed under Creative Commons Attribution 3.0 License CC©

116 RAY, NICKERSON

1 Introduction

The confluence of the web, mobile devices, skyrocketing social media use and Location-
Based Services (LBS) is contributing significantly to the Big Data era. Twitter, for example,
is estimated to be receiving over 9,300 tweets per second in 2021 [2], or more than 800
million tweets per day. When tweets or other forms of social media posts are georeferenced,
valuable knowledge can be obtained to support improved route planning, faster delivery
of emergency services, and more effective city visitor engagement. In addition, the massive
amount of data being continuously generated needs highly efficient systems that can ingest
new data at a high rate, while simultaneously answering many search requests per second.

The processing of textual documents requires a way to score and rank the documents
that are relevant to a particular search criteria, which often specifies a time component. We
call this type of information retrieval temporally relevant, as the time a social media post
or news article was posted influences how well it matches a search query that is time-
sensitive. In the information retrieval domain, TF-IDF (term frequency, inverse document
frequency) [41] is a measure widely used in ranking algorithms. TF-IDF evaluates the im-
portance of a word in a collection of documents, and requires a priori knowledge of the
entire dataset. The entire corpus of documents must be available upfront in order for the rank-
ing algorithm to work. Therefore, TF-IDF is not suitable for real-time ranking of contin-
uously updated geo-tagged documents. Moreover, TF-IDF does not consider the age of a
document while ranking.

Novel approaches are required for efficient storage, indexing, query processing and
retrieval of these massive amounts of continuously generated geotagged documents. Mah-
mood and Aref [28] classify spatio-textual queries as (i) filter, (ii) top-k, (iii) collective and
(iv) other. Top-k spatial keyword queries (TkSKQ) retrieve up to k documents based on
their textual similarity to the query keywords and their distance from the query location. A
temporally relevant TkSKQ also considers the age or recency of a document. An example of
such a query might be “presidential inauguration within 10 km of Washington DC”. This
query should retrieve a different set of documents in 2021 than a query about the presi-
dential inauguration in 2017 or 2013. The importance of geo-tagged document search has
given rise to a number of spatio-textual indexing approaches. Chen et al. [14] conducted a
comprehensive study of 12 of them. They point out that only a few support TkSKQ, such
as [18, 40, 54]. These indexes were not, however, designed for real-time document streams
and as such, they all share a few limitations in this context. First, they need a data loading
phase to ingest the data and build the index. The entire dataset must be made available a
priori in order to calculate the spatial and textual relevance score needed to build the index.
Second, these indexes do not consider the temporal relevance. These indexes use ranking
functions, such as TF-IDF [41] and the language model [36], that combine a spatial and a
textual relevance score. For instance, the I3 index [54] uses the TF-IDF measure. Third,
these spatio-textual indexes are not capable of sustaining near real-time data ingestion. In-
dexing systems such as I3 and IR-tree [18] are based on tree data structures, offering limited
concurrent processing that is not scalable with massive update-heavy workloads.

To address some of the above-mentioned issues, several approaches have been pro-
posed, with a primary focus on textual data streams. Earlybird [12] was designed to enable
near real-time text search, but does not support spatio-textual queries. Taghreed [26] is ca-
pable of executing arbitrary queries on microblog streams by utilizing an in-memory index
supporting continuous digestion of real-time microblogs. It can execute several categories

www.josis.org

http://www.josis.org

TEMPORALLY RELEVANT PARALLEL TOP-K SPATIAL KEYWORD SEARCH 117

of queries such as spatio-temporal boolean range keyword search, and top-k frequent key-
word query. However, their approach [26] does not support ranked TkSKQ or a ranking
scheme that incorporates both spatial and textual relevance. Mercury [27], is an in-memory
index that was designed to support real-time search using top-k spatio-temporal queries
over microblog streams. Mercury’s ranking scheme, however, only takes into account spa-
tial and temporal relevance, not textual relevance. Our system shares several goals with
these systems, namely, high throughput ingestion of spatio-textual document streams and
ad hoc (snapshot) queries with low latency search time. Unlike these systems, however, our
approach supports ad hoc TkSKQ queries and a unified ranking scheme that incorporates
temporal, spatial and textual relevance.

Researchers have proposed several location-aware publish-subscribe systems to enable
continuous spatio-temporal query execution over data streams. Note that a continuous
query is different from an ad hoc (snapshot) query. First, a continuous query needs to be
registered. Then, the query is evaluated continuously over the incoming data stream. A few
indexing systems that support continuous queries over spatio-textual data streams include
TaSK [13], AP-Tree [51] and FAST [29]. Tornado [30, 31] is a distributed in-memory stream
processing system to execute continuous spatio-textual queries. These publish-subscribe
approaches are not designed to answer ad hoc (snapshot) TkSKQ queries, as Pastri does.

Although TkSKQ queries are the main focus of this paper, our system also supports
spatio-temporal textual top-k query (TkSTTQ). TkSTTQ uses a ranking scheme that in-
corporates spatial, temporal and textual components of a document in its overall scoring
mechanism. Pastri supports temporally relevant TkSKQ and provides direct support for
TkSTTQ ad hoc queries that include a temporal range restricting the search to find and
rank documents within a specific time window.

To summarize the goals of our system, we support: (1) high throughput ingestion of
spatio-textual data streams, (2) ad hoc (snapshot) TkSKQ and TkSTTQ queries with inter-
active response time, and (3) a dynamic ranking scheme that considers spatial and textual
relevance along with temporal recency. To that end, we propose a dynamically ranked TF-
IDF (DRTF-IDF). This is a time-based ranking scheme that adapts as continuous streams
of new documents are ingested by the system [37]. In order to support updates based on
real-time document streams and efficient TkSKQ over such data, we present our spatio-
textual index PASTRI (PArallel Spatio-Textual adaptive Ranking-based Index). We use the
non-capitalized form of PASTRI, “Pastri” in the rest of the paper.

We developed an end-to-end system that was architected to be scalable, and capable of
supporting real-time document updates and concurrent query execution. The Pastri index
is conceptualized as a hybrid between a tree-based index and a grid index. The spatial
domain is organized as an in-memory grid and its cells are indexed by an in-memory STR
(Sort-Tile-Recursive) R-tree based component. The updates are managed by a component
that combines the in-memory grid with inverted lists, along with an in-memory table that
is backed by an in-memory cache and on-disk persistent storage. The persistent data store
is based on an extension to the log-structured merge-tree (LSM-tree) [35]. Our extension,
called pLSM (partitioned LSM-tree) store, can support high data update rate that is suitable
for ingesting document streams (see details in Section 5.3). Queries are processed by an
in-memory tree component that performs efficient circular range search from the query
location. In our approach, the textual relevance score of the documents are not calculated
during the index building time. Pastri uses our dynamic ranking measure DRTF-IDF to
calculate textual relevance score based on the keywords in a given query in real-time. This

JOSIS, Number 24 (2022), pp. 115–156

118 RAY, NICKERSON

on-the-fly computation of relevance score ensures that the query results include the most
recent relevant objects. We present a detailed complexity analysis of our insert and query
processing algorithms and prove (see Section 6) that the amortized cost to insert one data

item into our system is Θ(
log2

N
BP

BP) I/Os, where N is the number of data items in the pLSM
store, P is the number of LSM-trees (i.e. the number of partitions) comprising the LSM
store partitions in the pLSM store, and a block of data transferred to external memory disk
holds B data items.

We have implemented a prototype of our system and evaluated it with several datasets.
This paper extends our previous work [37, 38], however, we have incorporated signifi-
cant enhancements, including, new algorithmic details and analytical proofs, and exten-
sive evaluation and analysis. We also present new synthetic spatio-textual datasets that
we have created. Furthermore, we present experimental results with a new real-world
Wikipedia dataset. Our end-to-end system delivers high performance with a single enter-
prise server class machine having large main memory and multiple cores. Such machines
can have hundreds of GBs or a few TBs of main memory. Since our approach uses a par-
allel in-memory index, it could be extended to multiple nodes by exploiting high-speed
networking. Our in-memory index component uses dictionary encoding to significantly
reduce memory footprint. Furthermore, since our dynamic ranking scheme (DRTF-IDF)
uses an exponential decay parameter (to support recency), relatively older documents can
be flushed from the index and a disk-based index can be used to search over older doc-
uments. We present a thorough evaluation of our system Pastri in Section 7. We show
that Pastri can ingest about 200,000 documents/second with a 20 million record dataset.
In contrast, Taghreed [26] reportedly can ingest up to 32,000 microblogs/second; [26] does
not report any query performance. Mercury [27] can ingest 64,000 microblogs/second and
achieves a query latency around 4 msec. Recall that Mercury’s ranking scheme does not
incorporate textual relevance. On the other hand, Pastri uses a ranking scheme that takes
both textual and spatial relevance into account. With Pastri index, our system supports
efficient query processing with latencies that are comparable to those of Mercury or lower.
Moreover, compared to two popular indexes, IR-tree and I3, Pastri’s update throughput
and TkSKQ query performance is significantly better (see the results presented in Sec-
tion 7). In Section 7.6 we show the query performance of TkSTTQ is significantly better
with Pastri compared to IR-tree and I3.

The key contributions of this paper are:
• We present a novel spatio-textual index, Pastri, that supports real-time ingestion of

document streams and concurrent execution of multiple arbitrary TkSKQ and Tk-
STTQ queries.

• We introduce a temporally relevant dynamic ranking scheme for document streams
called DRTF-IDF.

• We explore a few optimization techniques in the context of a scalable system archi-
tecture, including pLSM for high throughput data insertion and three load-balancing
algorithms to handle data skew.

The rest of the paper is organized as follows. In section 2 we describe the related works.
Section 3 outlines the problem statements. We present our dynamic ranking scheme in
section 3.1. In section 5 our index Pastri is presented along with the algorithms for update
and query processing. Then in section 6 we provide analysis of these algorithms. Section 7
presents evaluation study and finally, section 8 concludes the paper.

www.josis.org

http://www.josis.org

TEMPORALLY RELEVANT PARALLEL TOP-K SPATIAL KEYWORD SEARCH 119

2 Related Work and background

In this section, we discuss related work. First, we mention previous research pertaining
to spatio-textual indexing and then outline previous work on indexing spatio-textual data
streams. Finally, we present work related to ranking streaming documents.

2.1 Spatio-textual Index

Spatial keyword search has been growing in importance in recent years. Consequently,
researchers have proposed several spatio-textual indexes. Based on the structure of spatio-
textual indexes, they can be generally classified into three categories: tree based indexes,
grid-based indexes and space filling curve based indexes. Chen et al. [14] evaluated 12 of
these indexes. Their evaluation study suggests that not all of these indexes support TkSKQ
search. Almaslukh et al. [4] performed an experimental study of ten main-memory indexes.
They were constructed as combinations of four indexing building blocks: R-tree, quadtree,
grid, and inverted index. The ranking scheme used in their evaluation is based on spatial
and temporal components, but it lacks a textual component.

Among the general categories of spatio-textual indexes, the IR-tree [18] is one of earliest
tree based approach to be proposed. It is an R-tree based index and it supports TkSKQ.
IR-tree combines an R-tree with an inverted file. Specifically, it enhances the nodes of the R-
tree with summary information regarding the textual content of the node’s corresponding
subtree. The spatial relevance is calculated from the MBR, whereas, an upper bound of the
textual relevance score is computed from the summary information. This information is
utilized for the purposes of pruning search paths. Several variants of the IR-tree are also
proposed by the authors, that include the DIR-tree, the CIR-tree and the CDIR-tree. The
S2I [40] is another tree based index. It exploits two different approaches: one for frequent
terms and the other for infrequent terms. In the case of infrequent keywords, the elements
in an inverted file are stored sequentially to support efficient I/O. For frequent keywords,
an aggregated R-tree (aR-tree) is utilized for better pruning. The I3 index [54] is another
spatio-textual index, which is based on a textual partitioning approach similar to that of
S2I. However, for spatial indexing it utilizes a quadtree, rather than an R-tree. Choudhury
et al. [16] presented an approach designed for batch processing of queries. It can take
advantage of the spatial proximity of a batch of queries when searching their IR-tree based
index. Hoang-Vu et al. proposed a k-d tree based index, called ST2I [24], which supports
queries that combine keywords with spatial and temporal constraints. ST2I, however, does
not support streaming updates. Also, ST2I does not consider a dynamic ranking scheme.

SFC-QUAD [17] is one of the few non-R-tree based indexing approaches that support
TkSKQ. It is based on an inverted file in which the document id and object frequencies
are compressed using the OPT-PFD algorithm [53]. The documents maintained by each
inverted list are ordered by the position of the document ids in a Z-curve. SFC-QUAD also
utilizes a quadtree for efficient traversal.

The grid-based indexes integrate a grid index with a text index. Among the grid-based
indexes ST & TS [48] and SKIF [25] are perhaps the most well-known. ST and TS can be
treated as a loose organization of spatial-first and textual-first indices, respectively. SKIF
uses an inverted-file structure to store the textual information. The grid-based approaches
can only support boolean range queries, but not TkSKQ, as reported by [14].

JOSIS, Number 24 (2022), pp. 115–156

120 RAY, NICKERSON

STILT [7] is a recently proposed trie-based index that interleaves text, location, and
time information within a single structure. It supports spatio-temporal textual queries with
any combination of dimensions involving location, time and text, including top-k spatial
keyword search queries. However, it uses the TF-IDF scheme for textual ranking, which is
not temporally relevant.

The goal our index, Pastri, shares with the above-mentioned indexes is to be able to
support ad hoc (snapshot) top-k spatial keyword search. Pastri can be considered as a hy-
brid between a tree and a grid-based approach and it can support top-k spatial keyword
query. Unlike Pastri, however, none of these indexes considered temporal relevance based
on dynamic ranking. We also support high document update throughput with a parti-
tioned LSM-tree based persistent data store. Moreover, our highly multi-threaded system
can exploit parallelism at various levels.

Researchers investigated geo-social temporal queries [5, 45] in which the social context,
such as popularity among friends, is considered. Due to their focus on social aspects, they
are somewhat orthogonal to our approach.

2.2 Indexing spatio-textual data streams

Motivated by the rapid rise in streaming data sources, social media and the popularity of
online search, a number of research projects investigated the topic of keyword search on
data streams. Markowetz et al. [32] proposed an approach for keyword search on relational
data streams, which requires no knowledge about the schema. However, their approach
does not consider a ranking mechanism. Also, it does not retrieve the top-k results. Cheng
et al. [15] investigated how to extract representative posts from data streams, particularly
with micro-blogging data.

In recent years, supporting low latency search and updates has been a major focus of
the research on real-time search over massive streams. The Earlybird [12] search engine
answers queries with an average latency of 50 ms that include tweets submitted 10 seconds
before the search query was issued. However, Earlybird is designed for real-time textual
search and it does not support spatial criteria. StreamCube [21] uses a similarity measure
based on both hashtags and words in tweets from Twitter stream to automatically generate
top-k event rankings. Unlike Pastri, however, StreamCube is not capable of performing
user-defined top-k spatial keyword search.

Magdy et al. [26] proposed Taghreed, a microblog data management system. It supports
several types of queries, for instance, finding the top-k most frequent keywords used within
given spatial and temporal ranges. However, Taghreed does not support ranked top-k
spatial keyword queries as defined in Section 1. Mercury [27] is another system designed
for real-time search on microblogs. Although, it supports top-k spatio-temporal queries,
however, its ranking scheme is based on spatial and temporal relevance. Hence, its ranking
scheme does not consider textual relevance.

A key objective of Pastri is to support ad hoc (snapshot) ranked top-k spatial keyword
queries. On the other hand, a continuous query is required to be registered with the sys-
tem, before it can be evaluated on the incoming data stream. Therefore, publish-subscribe
approaches [13, 23, 29–31, 51], which are designed for continuous spatio-temporal queries
over data streams are not pertinent to this discussion.

www.josis.org

http://www.josis.org

TEMPORALLY RELEVANT PARALLEL TOP-K SPATIAL KEYWORD SEARCH 121

2.3 Ranking streaming textual documents

In the information retrieval research, TF-IDF (term frequency, inverse document fre-
quency) [41] is a very popular similarity measure used for ranking the relevance of doc-
uments. A few projects explored TF-IDF for ranking streaming documents. In [11], a mod-
ified measure called TF-PDF (term frequency, proportional document frequency) was pro-
posed that attempts to assign significant weight to the terms related to hot topics available
from newswire sources on the Web. In the context of a real-time unsupervised document
clustering problem, a scheme called TF-ICF (where C is for corpus) was proposed [39].
Other ranking mechanisms have been proposed as well. For instance, for semantic-aware
querying and event detection, similarity measures [8, 46] were introduced that incorpo-
rate semantic aspects, besides spatial or temporal features. However, these approaches are
orthogonal to our approach.

The work that most resembles our document ranking method is the Approximate TF-
IDF (ATF-IDF) proposed by Erra et al. [20]. Unlike the precise version of TF-IDF, ATF-IDF
does not require a complete knowledge of the number of documents and hence it can be
applied to streamed data processing. Our scheme, dynamically ranked TF-IDF (DRTF-
IDF), also calculates approximate ranking. However, ATF-IDF does not consider temporal
relevance.

AFIA [44] supports top-k most frequent term searches over massive geo-tagged Twit-
ter streams by using approximate ranking. While this is a different problem than Pastri’s
TkSKQ, Pastri also uses an approximate TF-IDF ranking for text. Pastri’s ranking scheme,
DRTF-IDF, is an extension of our initial work [37]. In this paper we present a formalized
notion of DRTF-IDF and illustration of this scheme.

3 Problem statement: temporally relevant top-k spatial key-
word query

Definition 1. Given a continuously updated set of spatio-temporal documents O, a temporally
relevant top-k spatial keyword query (TkSKQ) q finds the set X of the k highest ranked matching
documents, which are ranked based on equation 7 as follows:

X ≡ sort({∀x ∈ X : |q.W ∩ x.W | > 0,

d(x.l, q.l) ≤ cr, |X| ≤ k}).
(1)

Here, each document o = (id, l,W, to) in the set O of indexed documents has an identi-
fier o.id, a two-dimensional spatial location o.l, a set of terms or words o.W comprising the
document contents, and a time to when the document was defined. Further, q = (l,W, t),
where q.l is the query spatial location, q.W is the set of terms or words being searched for,
and q.t is the query time. An initial radius r of a search disk centered at q.l is defined, as
well as a constant c ∈ N1 defining the maximum number of increases in radius (if the initial
search radius yields less than k matches). The distance d(x.l, q.l) between the document
and query locations is used to compute the spatial match score as defined in equation 2.
X is a sorted set of size k (or less) consisting of the (up to) k highest ranking documents
scored according to equation 7. The sorted result set X is maintained in a priority queue as
described in section 5.5.

JOSIS, Number 24 (2022), pp. 115–156

122 RAY, NICKERSON

3.1 Temporally relevant dynamic ranking

Our ranking process considers the spatial location, text and time similarity of the query q
to each document inO. The rank 1 document corresponds to the closest match to the query.

3.1.1 Spatial Match

The spatial match score S(o, q) ∈ [0, 1] is defined as the distance from the query location q.l
to the document location o.l, normalized by ri, where ri is the radius of the current search
disk, as follows:

S(o, q) =


1 if o.l = q.l,

1− 2((d− ri)/ri)2 if 0 < d ≤ ri/2,
2(d/ri)

2 if ri/2 ≤ d < ri,

0 if d ≥ ri,

(2)

where d is the spatial distance from q.l to o.l. Equation 2 corresponds to a piecewise
parabolic curve, which is sometimes used to define fuzzy set membership functions that
approximate the sigmoid function shape.

3.1.2 Textual Match

The textual match score T (o, q) accounts for the frequency of terms in documents in O, and
in the query q. It is computed as follows:

T (o, q) =

∑
w∈q.W

tfidf (w , o)tfidf (w , q)√ ∑
w∈q.W

tfidf (w , o)2
√ ∑
w∈q.W

tfidf (w , q)2
, (3)

where w is a specific term (e.g. a word) in the document o or the query q. Equation 3
was introduced by Salton et al. [42] for use in information retrieval, and returns a value
T (o, q) ∈ [0, 1] corresponding to the cosine of an angle between the query and document
in a document keyword similarity space. For a given term τ and document p, the term
frequency inverse document frequency (tf-idf) coordinate tfidf (τ, p) in the similarity space
is computed as

tfidf (τ, p) =
f(τ, p)

|p.W |
log

|O|
|{∀o ∈ O : τ ∈ o}|

, (4)

where f(τ, p) is the number of times term τ appears in document p, |p.W | is the number of
terms in p, and |O| is the size of the document set O. The log term on the right of equation
4 is the inverse document frequency; its denominator is the number of documents in O
in which term τ appears. Note how parameter p can be either the query document q or a
document o ∈ O.

3.1.3 Dynamic Ranking

We define a decay parameter H(∆t) ∈ [0, 1] as follows:

H(∆T) = e−λ∆t, (5)

www.josis.org

http://www.josis.org

TEMPORALLY RELEVANT PARALLEL TOP-K SPATIAL KEYWORD SEARCH 123

where ∆t = |q.t−o.to| is the absolute value of the difference between the query time q.t and
the time to the document o was defined. Decay constant λ is related to a constant half-life
t1/2 as follows:

λ =
ln(2)

t1/2
(6)

Half-life t1/2 defines the time period during which the textual match score T (o, q) decreases
by half its weighted value. For example, with t1/2 = 1 (e.g. one day), the value of the decay
parameterH(1) is 0.5 compared toH(0) = 1. For documents two days older than the query
time q.t, H(2) = 0.25.

The score R(o, q) of a document o ∈ O defined at time to matching a query q at time q.t
is

R(o, q) = α(1− S(o.l, q.l)) +
1

H(∆t)
(1− α)(1− T (o, q)), (7)

where α ∈ [0, 1] is the relative weight assigned to the spatial match score. Ranking the
scores R(o, q) by sorting from smallest (rank 1) to largest, and choosing the first k in the
ranked document list defines our ranking scheme. We call this scheme DRTF-IDF (dynam-
ically ranked term frequency inverse document frequency) as it adapts to a continuous
stream of new documents.

Other textual match models such as the language model [36] could also be used for
T (o, q) in equation 7 as long as their maximum value is 1. If q.t = to, then H(∆t) = H(0) =
1, and the textual match receives its full weight of 1 − α. Equation 7 provides the ranking
process for our top-k spatial keyword query (TkSKQ) processing Algorithm 6.

3.2 Example

In this section, we illustrate top-k search based on dynamic ranking. The sample dataset
consists of 14 spatially referenced objects, shown in Table 1. Note that the table displays the
objects sorted in reverse chronological order, with the most recent document shown first.

Document Text Date Distance(m)

14 unbelievable lobster taco 06/29/20 194
13 best T-bone steak 06/28/20 450
12 delicious lobster roll 06/21/20 250
11 nice steak 06/21/20 694
10 great shrimp and steak 06/17/20 294
9 smoked salmon waffle 06/14/20 219
8 nice Hawaiian pizza 06/14/20 581
7 excellent fajitas 06/12/20 262
6 very nice red snapper 06/12/20 400
5 great Vietnamese 06/05/20 394
4 best grilled steak 06/03/20 450
3 superb steak 05/30/20 294
2 very good enchiladas 05/28/20 575
1 best chimichangas ever 05/16/20 469

Table 1: Spatially referenced objects in Figure 1

JOSIS, Number 24 (2022), pp. 115–156

124 RAY, NICKERSON

An example query with query criteria q({best steak}, 06/30/20), and with query loca-
tion at the center of the search disk shown in Figure 1, involves a query search radius of
500 m.

Figure 1: Example top-k search based on dynamic ranking.

Rank Document Text q.t− to Score
(days)

1 13 best T-bone steak 2 0.522
2 4 best grilled steak 27 0.623
3 11 nice steak 9 0.731
4 10 great shrimp and steak 13 0.887
5 3 superb steak 31 0.948

Table 2: Top-5 results for documents in Table 1, with α = 0.2, half-life t1/2 = 64 days, query
q({best steak}, 06/30/20)

The outcome of executing the example query are the top-5 ranked results as shown in
Table 2. As can be seen, even though documents 13 and 4 are the same distance from the
query location, document 13 (2 days old) gets a lower score (resulting in a higher rank)
compared to document 4 (27 days old) due to the dynamic ranking of equation 7. Docu-
ment 14 is not included in the top-5 ranked results even though it is the closest to the query
location, and the most recent. Equation 1 requires that |q.W ∩ x.W | > 0, and this condition
is not met for document 14.

Figure 2 demonstrates the dynamic effect of our temporally relevant ranking scheme on
document 3 using four different query dates (31-May, 10-Jun, 20-Jun, 30-Jun), each issued
with the same query words q.W as in Table 2, with four half-lives t1/2 ∈ {8, 16, 32, 64} days.

For Figure 2, we assume that the query time q.t always exceeds the latest to for any
document o ∈ O. The size of the document set |O| changes over time on the four query
dates, so document 3 competes with better scoring documents as |O| increases. Notice how

www.josis.org

http://www.josis.org

TEMPORALLY RELEVANT PARALLEL TOP-K SPATIAL KEYWORD SEARCH 125

0

1

2

3

4

5

6

7

8

9

10

31-May 10-Jun 20-Jun 30-Jun

S
co

re
 (

th
e

 l
o

w
e

r,
 t

h
e

 b
e

tt
e

r)

half-life=8

half-life=16

half-life=32

half-life=64

Figure 2: Document 3 score (Table 1) for different half-life t1/2 values; lower scores give
better ranks.

a half-life t1/2 of 8 days means that document 3 (defined on 30-May) is 31 days old on 30-
Jun, or almost four complete half-lives. The decay parameterH(∆t) = H(31) = 0.068, which
increases the weighted textual match score in equation 7 by a factor of 1/0.068 ≈ 14, and
increasing its rank to 13.

4 Problem statement: spatio-temporal textual top-k query

Definition 2. A spatio-temporal textual top-k query (TkSTTQ) returns the set Y of the k highest
ranked documents in O that satisfy a query q, as follows:

Y ≡ sort({∀y ∈ Y : |q.W ∩ y.W | > 0,

d(y.l, q.l) ≤ cr, q.tL ≤ y.to ≤ q.tU , |Y | ≤ k}).
(8)

The query q = (l,W, T, k) specifies a query location q.l, a query keyword set q.W , a
query time range q.T (where T = {tL, tU} defines the time range lower bound tL and
upper bound tU), and a parameter k where k is the number of ranked documents to return.
Parameters c, r and function d(y.l, q.l) are as defined in section 3. To assign scores and
order the documents in Y , we use the following spatio-textual temporal combined score
C(y, q):

C(y, q) = α(1− S(y, q)) + ηM(y, q) + ζ(1− T (y, q))

where, α, η, ζ ∈ [0 .. 1] : α+ η + ζ = 1
(9)

The spatial score S(y, q) is computed using Equation 2. The textual score T (y, q) is com-
puted using Equation 3. The temporal score M(y, q) is calculated based on the recency of

JOSIS, Number 24 (2022), pp. 115–156

126 RAY, NICKERSON

the document time o.to within the query time range q.T , and is computed as:

M(y, q) = 1− o.to − q.tL
q.tU − q.tL

(10)

Note that a lower temporal score results in a higher rank for the document, as with the
TkSKQ search defined in section 3. Y is thus a sorted set of size k or less (if fewer than k
documents match the query) consisting of the (up to) k highest scoring documents match-
ing Equation 8. We use a priority queue to maintain the sorted set Y of the (up to) k highest
ranked documents while searching.

The textual score in TkSTTQ does not decay over time, which is the case in TkSKQ. Thus
the ranking scheme of TkSTTQ is not dynamically updated. On the other hand, its tempo-
ral score component takes recency of the document into account and hence the combined
ranking is still temporally relevant.

5 Pastri spatio-textual index

We present the system organization and the internal data structures of our spatio-textual
index Pastri in this section. We also outline the update and query processing algorithms in
detail.

5.1 System organization

To support high update throughput and low latency query processing, an effective use of
CPU and memory resources should be made, while minimizing I/O. Our system follows
a multi-threaded organization and utilizes an in-memory index. In Figure 3 we show the
update and query processing workflows. Pastri is designed to be able to ingest document
streams efficiently. As shown in Figure 3, upon receiving a geo-tagged document, such as
a tweet, o = (id, l,W, to), it is enqueued by our system into the queue RQt. Threads in
the thread pool TPt are known as table insert threads and one of them retrieves the newly
received document from RQt. To store the document in our system a DocumentTable record
is created based on the received document. A unique record id, RID is generated by in-
crementing a variable with an atomic operation. This unique id is produced when the
record is inserted into the table DocumentTable. The schema of DocumentTable is as follows:
{DocumentId,Datestamp,Latitude,Longitude,Content}.

Here, the column DocumentId is a unique identifier of the document and corresponds to
the document field o.id. The column Datestamp is the time, to, representing the time when
the document was created. The table columns Latitude and Longitude correspond to the
document fields o.l.lat and o.l.lon and represent the location of the document, Finally, the
Content column stores the textual content of the document o.W . Note that if the content
o.W is a small document, such as, a Facebook post, a tweet or blog comment, it can be
stored directly in the Content column. On the other hand, if the content is too large to be
stored in the Content column of the table, it can store the pointer to its location in the disk
file. In our system, we encode the document text using dictionary encoding and store them
as a list in the Content column of the DocumentTable.

The table, DocumentTable, is persisted into the stable storage by an update efficient data
store LSt. We implemented this data store by extending the LSM-tree, which involves main-
taining multiple LSM-tree based partitions. Our extension, called pLSM store, can support

www.josis.org

http://www.josis.org

TEMPORALLY RELEVANT PARALLEL TOP-K SPATIAL KEYWORD SEARCH 127

Pastri

index
DocumentTable

Record

queues,

RQx

Document

queue,

RQt

Index update

thread pool,

TPi

Table insert

thread pool,

TPt

Query

Results

Query

queue,

RQq

Query executor

thread pool, TPq

In-memory

cache, MCt

pLSM store, LSt

Document

Stream

Ad hoc

user

query

Figure 3: System architecture.

high data update rate that is suitable for ingesting document streams. Further details of our
data store is provided in Section 5.3. To enable low latency operations an important consid-
eration is how to minimize the disk I/O. To that end, our persistent data store is supported
by an in-memory cache MCt. The purpose of this cache is to maintain the most recent doc-
uments in memory and avoid disk I/O while accessing the records corresponding to such
documents. Hence, when a document record is inserted into DocumentTable, it actually
entails first inserting the record into MCt and then into LSt The in-memory cache MCt can
store a certain number of records based on the available system memory. Records from
MCt can be evicted based on different policies, for example, if the age of a record exceeds a
configured threshold.

The next step of processing a newly received document is to update the index Pastri.
After a document record is successfully created within DocumentTable, a copy of the record
is enqueued in one of the queues inRQx. A thread pool TPi is utilized to handle the entries
in RQx. A thread from TPi, called index update thread, is responsible for dequeuing the
record from RQx and then updating the index. More details about the update processing
algorithm is presented in Section 5.4. Further discussion about the inner working of the
index is in Section 5.2.

As new query processing tasks are submitted, they are enqueued in a queue RQq . To
support simultaneous processing of multiple queries, a thread pool TPq is utilized. A
thread in TPq is called query thread and it is responsible for the next query task in RQq .
A query processing task involves both the document table and the index. The details of the
query processing algorithm is provided in section 5.5.

JOSIS, Number 24 (2022), pp. 115–156

128 RAY, NICKERSON

Query location q.l + radius r

STR R-tree q.l

r

.. .. .

..
.

.
. .

.
. ...

.

.

.
.. .

..

..
...

.

.

..
... .

.
.

..

[<docId, termFreq,

timeStamp>]

[<docId, termFreq,

timeStamp>]

Inverted list (stored as

concurrent hash table)

One inverted list

per occupied grid cell

<no. of documents

word appears in>

Inverse document frequency table

(stored as concurrent hash table)

Spatial

grid

Per document term table

(stored as concurrent hash table)

<compressed

bitmap for each

word that appears>

Word Id

accost 1

amber 2

anthem 3

ashen 4

zither N

DictionaryWord Id
Document

Id

Word Id

<no. of documents

word appears in>

<compressed

bitmap for each

word that appears>

Figure 4: Structure of Pastri index.

5.2 Index structure

The spatio-textual index, Pastri, is an important aspect of our system. As shown in Figure 4,
Pastri has several internal data structure components. It can be treated as a hybrid between
a tree and a grid based index. The entire spatial region covered by the index is organized
into a grid, GRID, with equal size regular grid cells. To index the cells of GRID, STR, a
Sort-tile-recursive R-tree is utilized. This does a better job of packing the grid cells tightly
than a regular R-tree. This is important in order to perform an efficient spatial search. We
implement a circular range search algorithm with STR that returns the cells in GRID, which
are within radius r from a location q.l. Note, STR is solely used for query processing and it
is not involved in the document update.

To support textual indexing, inverted list based data structures are used. Specifically, an
inverted list (ILIST) is maintained for each grid cell in GRID. This (ILIST) keeps track of the
documents that are indexed at its corresponding cell. ILIST is implemented as a concurrent
hashtable, where the key is a word id and value is a list of tuples. Each value tuple is
comprised of 3 elements: the document id, the term frequency, and the timestamp when
the document was generated. The term frequency represents the number of times a word
appears in a particular document. The key of the hashtable (i.e. word id) corresponds to the
numeric identifier in a global word dictionary (DICT). The dictionary, DICT, is a global data
structure that serves to support dictionary encoding [1] of the text content in the documents
and thus assists in data compression. Each word in the text of a new document is checked

www.josis.org

http://www.josis.org

TEMPORALLY RELEVANT PARALLEL TOP-K SPATIAL KEYWORD SEARCH 129

against DICT, and if a match is found, the word is replaced by its position in DICT. If no
match is found, a new entry is created in the dictionary with the word as the key and its
position as the value.

Apart from DICT, there are three global data structures. They include, an inverse doc-
ument frequency table (IDFT), a per document term table (PDTT) and a global document
counter (DC). Whenever a new document object u is received by our system, the corre-
sponding cell within GRID is determined from its location (i.e. o.l.lat, o.l.lon), and then
the counter DC is incremented. The IDFT data structure keeps track of inverse document
frequency for each word, which is based on the number of unique documents in which a
word appears. To represent each document concisely, a concurrent hash table data struc-
ture, PDTT, is maintained. In this data structure the key is a document id and value is a
compressed bitmap (CBMAP). A bit in this bitmap is set if a keyword is present in the doc-
ument, where the bit position corresponds to the dictionary encoded value of that word.
To be memory efficient, CBMAP is compressed using a bitmap compression technique.

5.3 Storage structure

In this section we discuss our persistent data store. Since supporting high velocity stream-
ing updates and low latency query processing are key goals of our system, minimizing disk
I/Os is an important consideration. Recall that DocumentTable is backed by a disk-resident
persistent data store.

The log-structured merge-tree (or LSM-tree) [35] is an insert efficient data structure,
which supports key-value pair based indexed access to data files. An LSM-tree is par-
ticularly suitable for applications with high insert volumes, such as append-only logs. It
consists of a memory-resident component to absorb inserts and defer disk writes. When
the insert segments exceed a threshold, the in-memory component is merged into a corre-
sponding disk component. A known drawback of the LSM-tree is that its multi-threaded
scalability is not good. To illustrate this, we conducted an experiment with a persistent
store based on a single LSM-tree and observe its insert throughput scalability by varying
the number of insert threads. We used a synthetic dataset consisting of 1 million records,
with the record size 100 bytes. As shown in Figure 5, the highest throughput was achieved
with 1 insert thread. Increasing the number of threads from 1 to 2 threads caused a signifi-
cant drop in throughput, which did not improve when the number of threads were 4, 6 or
8.

To improve the multi-threaded scalability of LSM-tree with regards to data ingestion,
we introduce an enhancement to the regular LSM-tree based data store. In our persistent
storage (shown in Figure 3), there are multiple LSM-trees {Pi|1 ≤ i ≤ p}, each Pi is associ-
ated with a dedicated queue and an insert thread. We call this a partitioned LSM-tree store
or pLSM store and it offers the same APIs for reading and writing data as an LSM-tree.
While inserting a new document object, o ∈ O, the pLSM store uses an internal mapping
f : o 7→ i, which associates each object to a partition. Each o is first inserted into a queue
corresponding to i. A dedicated insert thread then retrieves o from its queue and attempts
to inserts it into partition i. We demonstrate in section 7.2.3 that the insert throughput of
our persistent store scales well with the number of threads.

Note that LSM-tree has been previously used in systems, such as AsterixDB [9], for data
storage. AsterixDB is a parallel database operating in a shared-nothing distributed cluster
setting. It supports high-throughput data ingestion through partitioned parallelism [22]. In

JOSIS, Number 24 (2022), pp. 115–156

130 RAY, NICKERSON

0

10,000

20,000

30,000

40,000

50,000

60,000

70,000

80,000

1 2 4 6 8 10

Number of insert threads

T
h

ro
u

g
h

p
u

t
 (

n
u

m
.

re
co

rd
s/

se
c)

Figure 5: Scalability of LSM-tree.

Algorithm 1: Algorithm InsertDocumentTable

Input: o is a document object to be inserted into the table, DocumentTable. It is backed
by disk-based pLSMStore and an in-memory table memtable

Output: record id, rid, of the newly inserted document object
1 rid← ridGen.atomicIncrement() ;
2 o.id← rid ;
3 memtable.insert(o.id,o) ;
4 byteArrO← serialize(o);
5 pLSMStore.put(o.id,byteArrO) ;

contrast, our approach Pastri is targeted for a single-node system and hence its data inges-
tion is focused on multi-threaded parallelism. In summary, Pastri’s data ingestion mecha-
nism is more fine-grained, whereas AsterixDB’s data ingestion system is coarse-grained.

5.4 Update processing

In this section, we describe the update processing algorithm. It is designed to handle the
ingestion of streaming geo-tagged documents. As a new document object, o ∈ O, arrives
at our system, it is at first enqueued into RQt (in Figure 3) and retrieved by a thread of
the thread pool TPt. The threads in TPt are called “table insert threads”. Before a new
record for the document can be inserted into DocumentTable, a new unique record id (RID)
is generated. Then the new record is inserted. Algorithm 1 shows the steps to insert o into
DocumentTable. First a unique RID is computed by an atomic operation and the object is
inserted into an in-memory table. Then the object o is serialized and stored in the persistent
pLSM store (lines 5 to 6).

Then an entry corresponding to the document record is enqueued into RQx (in Fig-
ure 3). The threads in the thread pool TPi are known as “index insert threads” and they
are utilized to handle the elements in RQx. One of these threads in TPi retrieves the new
entry from RQx and processes it by updating the data structures in the Pastri index. The
steps involved in this process are shown in Algorithm 2. At first, the grid cell to which the

www.josis.org

http://www.josis.org

TEMPORALLY RELEVANT PARALLEL TOP-K SPATIAL KEYWORD SEARCH 131

Algorithm 2: Algorithm ProcessIndexUpdate

Input: o is a document object and ILIST is the inverted list of the grid cell in which o.l
belongs to.

1 Initialize term frequency hash table termFreqHM;
2 for term in o.W do
3 if term exists in termFreqHM.keys() then
4 value← termFreqHM.get(term) ;
5 termFreqHM.put(term, value+1) ;

6 else
7 termFreqHM.put(term, 1) ;

8 for term in termFreqHM.keys() do
9 termFreq← termFreqHM.get(term) ;

10 if term exists in ILIST.keys() then
11 invList← ILIST.get(term) ;

12 else
13 Instantiate a new invList ;

14 invListEntry← (o.id, termFreq, t0) ;
15 Add invListEntry to invList;
16 ILIST.put(term, invListEntry);
17 IDFT.update(term);

18 PDTT.update(o);
19 DC.increment();

Algorithm 3: Algorithm Round-robin

Input: o is a document object, QueueArray is an array of queues, and NUM_WORKER
is number of index insert threads. Atomic integer nxtQId is global.

/* Table insert thread */
QueueArray[nxtQId.increment() % NUM_WORKER].add(o);

/* Index insert thread: id localThId */
1 Initialize: LocalQueue← QueueArray[localThId] ;
2 while true do
3 o← LocalQueue.pop() ;
4 Process o and insert into index ;

new document belongs to needs to determined. This is done with the location field o.l of
the corresponding record. As each grid cell has an associated inverted list ILIST, the next
step is to update it by registering a new entry in ILIST for every word in that document
(lines 8 to 16). The last step is to update the global data structures IDFT, PDTT and DC
(lines 17 to 19).

JOSIS, Number 24 (2022), pp. 115–156

132 RAY, NICKERSON

Algorithm 4: Algorithm Work-stealing

Input: Same as in Algo. 3. Additionally, rnd is random number generator.
/* Table insert thread */
QueueArray[rnd.nextInt(%NUM_WORKER)].add(o);

/* Index insert thread: id localThId */
1 for nxt← 0 to QueueArray.len()− 1 do
2 o← QueueArray[nxt].pop() ;
3 Process o and insert into index ;

Algorithm 5: Algorithm Affinity

Input: Same as in Algo. 3 . Additionally, Gcell2ThreadMapping is a hashtable that is
populated by an offline algorithm AffinityAssignment, which maps grid cells
to index insert threads.

/* Table insert thread */
1 cellId← o.l;
2 QueueArray[Gcell2ThreadMapping.get(cellId)].add(o);

/* Index insert thread: id localThId */
Same as steps 1 to 4 in Algo. 3 .

5.4.1 Load-balancing and handling skew

The sources of data streams, such as micro-blogs, are not evenly distributed. This is depen-
dent on the geographical location and it can be expected that more data is generated from
regions where the population density is higher. As a result, the source locations of the geo-
tagged documents can be skewed. Such skew can have a significant effect on the update
performance of a grid-based index. Update processing threads dealing with dense regions
will perform more work than the ones processing sparse regions. With high update rates,
load-balancing becomes quite important. The objective of such a load-balancing algorithm
is to equally distribute the work involved in update processing among the update process-
ing threads. If this is achieved, then the variation in the number of geo-tagged documents
that are processed by these threads will be minimized. In practice, equal allocation of tasks
among workers can be challenging. To explore the trade-offs, we propose 3 load-balancing
algorithms: Round-robin, Work-stealing, and Affinity. We discuss them next.

Round-robin. The steps in Round-robin are presented in Algorithm 3. In this approach,
a table insert thread from TPt after having inserted the next document record into Docu-
mentTable, then proceeds to insert the record into a queue in RQx in a round-robin manner.
Recall from Figure 3 that RQx represents an array of queues. In Round-robin approach
each queue in RQx is associated with a thread in the thread pool TPi. Therefore, the se-
lection of next queue from RQx in a round-robin way can be done by incrementing the
atomic counter nxtQId and then performing a modulo operation (line 1 in Algorithm 3).
Subsequently, the inserted record is picked up by the corresponding worker thread in TPi
(line 4), which then updates the index based on this record (line 5).

Work-stealing. The steps involved in this load balancing algorithm is shown in Algo-
rithm 4. As the name suggests, the threads in TPi perform work-stealing while retrieving

www.josis.org

http://www.josis.org

TEMPORALLY RELEVANT PARALLEL TOP-K SPATIAL KEYWORD SEARCH 133

Algorithm 6: Algorithm ProcessQuery

Input: q is a given query and the goal is to find top k objects. Initial search radius r.
Priority queue PQueue stores the matched results.

1 cellsSeen← φ ;
2 for numAttempts=1 to MAX_ATMPTS do
3 distLim← initOrUpdate(r, numAttempts) ;
4 cellsFound← CircularRangeQry(q, distLim, cellsSeen) ;
5 cellsSeen← cellsSeen ∪ cellsFound ;
6 for cell2process in cellsFound do
7 ILIST← cell2process.invertedList() ;
8 Initialize perDocTextualScore ;
9 for term in q.W do

10 if term exists in ILIST.keys() then
11 invList← ILIST.get(term) ;
12 for (o.id, termFreq, t0) in invList do
13 cbitmap← PDTT.getbitmap(o.id) ;
14 if matches(cbitmap,term) then
15 textRelScore← calculate textual relevance score per Equation 3 ;
16 perDocTextualScore .update(o.id,txtRelScore);

17 for o in perDocTextualScore.keys() do
18 textRelScore← perDocTextualScore.getScore(o) ;
19 spatialRelScore← calculate spatial relevance score per Equation 2 ;
20 cScore← calculate combined relevance score per Equation 7 ;
21 sIndx← k;
22 if PQueue.size() < k then sIndx← PQueue.size() ;
23 idxScore← PQueue.getScoreAt(sIndx-1) ;
24 if compare(cScore,idxScore) then
25 PQueue.add(o.id,cScore) ;

26 if PQueue.size() ≥ k then break ;

records from RQx. To achieve this, unlike in Round-robin, the threads in TPi are not asso-
ciated to any queue in RQx in this approach. Instead, each thread iterates over the array of
queues in RQx (line 3 in Algorithm 4). If it finds a new record to be processed in the queue
currently being inspected, it is processed (lines 3–4). After that it moves on to check the
next queue.

Affinity. The Affinity load balancing algorithm is shown in (Algorithm 5). The main
idea behind this approach is for an index insert thread to process records destined for a
specific set of grid cells in the Pastri index (Figure 4), rather than any grid cell. Since some
grid cells cover areas that are denser than the others, with this approach workload distribu-
tion can explicitly consider the object density. Specifically, a mapping of grid cells to index
insert threads, Gcell2ThreadMapping, is produced by an offline algorithm AffinityAssignment
(skipped due to space constraint), such that the standard deviation of the object densities
in the grid cells assigned to the threads is less than a threshold. To determine per cell object

JOSIS, Number 24 (2022), pp. 115–156

134 RAY, NICKERSON

density, AffinityAssignment periodically performs a density sampling of each cell by calcu-
lating the number of documents originating from a grid cell in previous iterations. Then an
index insert thread from the TPi just processes those records that belong to the grid cells as
determined by Gcell2ThreadMapping.

In Section 7.2.1, we evaluate the above-mentioned load-balancing algorithms.

5.5 Query processing

In this section we describe the algorithms involving top-k query processing. Our sys-
tem supports both temporally relevant top-k spatial keyword query (TkSKQ) and spatio-
temporal textual top-k query (TkSTTQ). We mainly describe the processing of TkSKQ, since
the execution of TkSTTQ follows a very similar procedure.

Our system has been designed to enable efficient execution of TkSKQ over dynamically
ranked document streams. Algorithm 6 outlines a partial listing of the query processing
algorithm. For a TkSKQ query instance q, Algorithm 7 shows how to perform a circular
range search, in which the point of origin is q.l and the initial search radius r. Note that r
is configurable. This search process involves traversing the STR R-tree component of the
Pastri index (Figure 4) to find all grid cells that are within distance r from q.l. A priority
queue LocalPriQueue is used to keep track of the found cells. If a node of the STR R-tree is
a leaf node that is within the desired distance, then it is included in the set of found cells
cellsFound (lines 6–8 in Algorithm 7). Otherwise, it is an internal node and so its children
must to checked (lines 10–12 in Algorithm 7).

For every cell that is in the list of cells returned by Algorithm 7, the actual document
records are processed and their textual and spatial relevance scores are calculated. To that
end, at first the corresponding inverted list ILIST component corresponding to the particu-
lar cell is obtained (line 7 in Algorithm 6). Then the textual relevance score is calculated for
each document that contains one or more query keywords (lines 8–16 in Algorithm 6). Sub-
sequently, for each of those documents the spatial relevance score and the combined score
is calculated (lines 18–20 in Algorithm 6). A priority queue PQueue is used to maintain the
current top k documents. If the calculated combined score of a document is less than the
score of the k-th document in PQueue, it is enqueued (lines 21–25 in Algorithm 6).

In Figure 6, the processing of TkSKQ is visually illustrated with two queries: Q1 and
Q2. The purple dots correspond to location of the documents. When a query q is issued,
a list of grid cells that are within distance r from q.l are returned by Algorithm 7. The red
circles represent the query radius. Then, all the documents in these cells are processed by
Algorithm 6. For query Q1, the light blue shaded cells are covered by the initial query
radius r. If k matches are found, Algorithm 6 returns them as the search result. Other-
wise, the search radius must be enlarged and the process is repeated for each expansion
of the radius. For query Q2 this expansion was required until k matching documents were
found. The pink shaded cells are all the cells that were processed during the execution of
query Q2. Since this process of expanding of the search radius and processing the covered
cells can continue indefinitely, a maximum attempt threshold MAX_ATMPTS is used. If
the maximum attempt threshold MAX_ATMPTS is exceeded, search terminates and query
returns with the matching documents found so far (if any).

www.josis.org

http://www.josis.org

TEMPORALLY RELEVANT PARALLEL TOP-K SPATIAL KEYWORD SEARCH 135

Algorithm 7: Algorithm CircularRangeQry

Input: q is a given query, distLim the search radius and cellsSeen are cells processed in
prev. iterations. STR is the STR R-tree that indexes the grid cells.

1 cellsFound← φ ;
2 node← STR.getRoot() ;
3 LocalPriQueue.add(node) ;
4 while LocalPriQueue.hasMoreElts() do
5 node← LocalPriQueue.poll() ;
6 currDist← distance(node,q.l) ;
7 if currDist ≥ distLim then break ;
8 if node.isLeaf() then cellsFound← cellsFound ∪ node ;
9 else

10 for cnode in node.children() do
11 if distance(cnode,q.l) < distLim then
12 LocalPriQueue.add(cnode) ;

13 return cellsFound \ cellsSeen

��

��

Figure 6: Illustration of query processing in Pastri.

6 Analysis

In this section we provide detailed cost analysis of the insert and query processing algo-
rithms. Specifically, we prove a tight bound for the cost of inserting N data items into a
single LSM tree, which leads to a tight bound on the amortized cost to insert a single data
item into a pLSM store. An upper bound on the cost of retrieval (query) is also provided.

JOSIS, Number 24 (2022), pp. 115–156

136 RAY, NICKERSON

Algorithm 8: LSMinsert(C, C0)

Input: The compaction set implemented as a stack C

The main memory component C0

Output: Updated compaction set stack C

1 merged← false ;
2 c← describe(C0) ;
3 while |c| ≥ |top(C)| do
4 c← merge(c,pop(C)) ;
5 merged← true ;

6 if not merged then
7 write(c) ;

8 push(C, c) ;

6.1 Insertion

The running time in I/Os of the InsertDocumentTable Algorithm 1 depends on the cost
to insert records into the DocumentTable at line 5. The DocumentTable is stored in a pLSM
(partitioned log-structured merge-tree) store (see e.g. [35]). In our case, the pLSM store is
organized as P LSM-trees, where P is the number of LSM-trees comprising the pLSM store.
As keys are inserted into a pLSM store (line 5 in Algorithm 1), it internally distributes them
equally among the P LSM-trees.

Each LSM-tree contains hierarchical, sorted (by key) components C0, C1, ..., Ck, where
C0 is stored in main memory. The k remaining components all reside on non-volatile ex-
ternal memory such as rotating magnetic disks. As in [35], we assume that each successive
hierarchical component Ci holds up to f times the number of items held by Ci−1; i.e.

|Ci| = f |Ci−1|,∀i ∈ {1, ..., k} (11)

where C0 can hold up to M items, or M
B blocks of data. We follow the model of Aggarwal

and Vitter [3] [49] where a block of data transferred to external memory holdsB data items,
internal memory can hold at mostM data items, and the entire tree storesN data items. The
LSM-tree merges components of similar size, which means it does not merge components
with every write of MB data items to external memory. The LSM-tree insertion algorithm is
adapted from Scully [43], as described in Algorithm 8.

The compaction set C and c both store data describing the components (i.e. their size and
starting locations in memory). The describe(C0) function at line 2 returns the description
of C0. Algorithm 8 assumes that the size of the top entry of an empty stack returns 0.
Merging of similar sized components is carried out at line 4, and involves reading and
writing blocks of the two memory components being merged. The merged component is
then pushed back on top of the stack. If no merge occurred (if |c| < |top(C)|), then the
main memory contents are written to external memory at line 7. The merged component
description c is pushed onto the compaction set stack C at line 8. Here, we have f = 2 in
equation 11.

Theorem 6.1. Using Algorithm 8, the cost I(N) in I/Os to insert N data items into an LSM-tree
is bounded as 2NB log2

N
B − 4NB + 5 ≤ I(N) ≤ 2NB log2

N
B .

www.josis.org

http://www.josis.org

TEMPORALLY RELEVANT PARALLEL TOP-K SPATIAL KEYWORD SEARCH 137

!"#$%"&'(

)$)*%+(

,-#$%"&'(

)$)*%+(

.&/(.0/(.1/(.2/(.$/(.3/(.4/(.5/(.6/(.7/(

!"#$%"&'(

)$)*%+(

,-#$%"&'(

)$)*%+(

.8/(.'/(.)/(.*/(.9/(."/(

Figure 7: Progression of LSMinsert(C, C0) algorithm I/O operations up to 8M data item
inserts.

Proof. The number of I/Os required by Algorithm 8 is determined by the merge(c,pop(C))
operation at line 4 and the write(c) operation at line 7. Each merge(c,pop(C)) statement
merges two already sorted components of similar size. Figure 7 illustrates the start of the
process.

State (a) has M
B blocks of data in main memory, and transforms to state (b) after M

B
blocks of data are written to external memory at line 7. At state (c), main memory contains
another M

B blocks of data, and the merge operation at line 4 reads M
B blocks of data from

external memory, and writes 2MB blocks of data to external memory. At state (d) the cost is
(1 + 2 + 1)MB = 4MB I/Os. This pattern repeats up to state (h), incurring an additional 4MB
I/Os. At state (h), the top of the stack C points to the first set of 2M data items written to
external memory indicated at state (d), and c points to the second set of 2M data items in
external memory. These sets are both the same size, so a second merge operation is invoked
at line 4, which costs (2 + 2 + 4)MB I/Os. At state (i), the total cost is (2(1 + 2 + 1) + (2 +

2 + 4))MB = 16MB I/Os. The pattern repeats, as illustrated in states (j) to (p), resulting in the
following recurrence relation:

T (n) = 2T (
n

2
) + 2n (12)

with T (1) = 0, and where n = N
B . Solving this recurrence gives T (n) = 2n log2 n. This

results in the upper bound of 2NB log2
N
B I/Os as claimed in Theorem 6.1.

The lower bound of Theorem 6.1 arises due to the delay in merging until as late as
possible. Queries to find data items indexed by the LSM-tree are answered even if up to M
data items are in internal memory. Thus, the minimum number of I/Os for insertion occurs
when the greatest number of data items are in internal memory, and the next insertion
forces a merge. States (a), (c), (g), and (p) in Figure 7 illustrate such “minimum I/O” states.
State (a) incurs 0 I/Os, state (c) has incurred M

B I/Os, state (g) (after inserting 4M data
items) has incurred 5MB I/Os and state (p) (after inserting 8M data items) incurs the 5MB
I/Os from state (c) plus the minimum cost of merging and writing another 4M data items,

JOSIS, Number 24 (2022), pp. 115–156

138 RAY, NICKERSON

or another 16MB I/Os. Extending the pattern in a similar fashion, we see that the “minimum
I/O” cost for inserting 16M data items is an additional 48MB I/Os. The recurrence relation

T (n) = T (
n

2
) + n log2

n

2
(13)

defines the number of I/Os, with T (1) = 0, T (2) = 1, where n = N
B . Solving this recurrence

gives T (n) = 2n log2 n− 4n+ 5. The lower bound of Theorem 6.1, i.e. 2NB log2
N
B − 4NB + 5

I/Os, is proven.

Theorem 6.1 leads to the amortized cost of inserting a data item into an LSM-tree hold-
ing N data items as follows:

Corollary 6.1.1. Using Algorithm 8, the amortized cost I(N) to insert one item into an LSM-tree
is Θ(

log2
N
B

B) I/Os.

This result is the first we are aware of that gives a tight bound on the number of I/Os
(amortized over N inserts) required to insert a data item into an LSM-tree. In addition, the
partitioned LSM store used here reduces the insertion cost by a factor of 1

P as each key is
inserted into only one of P LSM-trees. We arrive at the following amortized cost for the
partitioned LSM store:

Corollary 6.1.2. Using Algorithm 8, the amortized cost I(N) to insert one data item into an LSM
store consisting of P LSM-trees is Θ(

log2
N
BP

BP) I/Os.

Proof. The proof is obtained by substituting N
P for N in Theorem 6.1, and dividing by N to

amortize the cost.

This result assumes a single disk model [3] with sequential access. If the P LSM-trees
can be stored on P external stores (e.g. disks as in the multi-disk model [50] [6]), this bound
can be improved.

6.2 Query
The running time in I/Os of Algorithm 6 (ProcessQuery) depends on the cost to find docu-
ments matching the q.W terms, and update the document textual score. In the worst case,
the for loop at line 6 visits all the grid cells in cellsFound, and finds that all documents in
each grid cell have terms that match one or more terms in q.W . In the normal case, we can
assume that all operations of Algorithm ProcessQuery are done in main memory; i.e. all
data is stored in the cache. In this case, the cost is zero I/Os. If cache is limited, one or
more of the LSM-trees in the pLSM store might need to be visited. In this case, the cost to
retrieve the document for each point found in range of the query of radius r centered at
q.l is O(logB

N
P) I/Os [10]. This cost assumes that the LSM-trees are using Bloom filters to

avoid unnecessary searches of external memory components.

7 Evaluation

We describe the experimental evaluation of our system in various settings in this section.
First we outline the datasets and the settings and then we describe the experiments. We

www.josis.org

http://www.josis.org

TEMPORALLY RELEVANT PARALLEL TOP-K SPATIAL KEYWORD SEARCH 139

present a performance study of our system against two popular spatio-textual indexes, IR-
tree and I3. These two indexes do not support real time ingestion of document streams,
however, both of them have support for ad hoc (snapshot) TkSKQ query execution.

A direct performance evaluation against systems that support document streams, such
as Taghreed [26] and Mercury [27], cannot be made because they do not support ranked
TkSKQ search. In Section 1 we presented a comparison of Pastri against Taghreed and
Mercury, based on their reported ingestion throughput and query latency, which indicates
that Pastri’s data ingestion performance is significantly better.

7.1 Experimental setup

We present the experimental setup in this section. This includes, the details regarding the
datasets, the query sets and setting of the experimental environment and key parameters.

7.1.1 Datasets

The performance evaluation was conducted with two categories of datasets. Further infor-
mation regarding them are mentioned next.

Twitter datasets: These datasets consist of tweets that were geo-tagged [14]. The geo-
tagging process involved using a real road network dataset [19]. Based on this dataset,
the tweets from the original Twitter dataset were geo-tagged [14]. We created two addi-
tional datasets in order to perform scalability experiments. Overall, there are three datasets,
namely, 200k, 2mi, and 20mi consisting of 200 thousand, 2 million, and 20 million tweets,
respectively. Table 3 shows the details of these datasets. In order to simulate live streaming
of the data, a driver program was implemented. This program stored the tweets into a
queue from which they were retrieved for further processing by different system compo-
nents.

Synthetic datasets: These datasets were generated in two steps. First, to generate the
locations, we utilized the GSTD tool [47]. It can generate synthetic data for point or rectan-
gular objects that follow one of several possible distributions. We used GSTD to generate
point datasets for three different distributions: Random, Skewed, and Gaussian. In Figure 8
the pictorial representations of the scaled version of datasets are shown. In the second step,
each location generated in the previous step is associated with a textual document. It has
been observed that natural language text follows Zipf distribution. To select the text for a
document, we developed an algorithm that generates words from a well-known English
language corpus data [33] following Zipf distribution. A summary of the datasets and
their properties are shown are in Table 4.

Wikipedia dataset: The georeferenced Wikipedia dataset [52], extracted from the offi-
cial Wikipedia dump, has 280,000 articles with an average of 1018 words per article. The
features of this dataset are summarized in Table 5.

7.1.2 Query set

A query workload was generated for each dataset. Each workload contains 1000 queries.
Each query in a particular workload specifies a query location, a timestamp, and several
keywords. During the query workload generation process a selectivity parameter is spec-
ified. As an example [34], if the selectivity is 5%, it means that there is a 5% chance that

JOSIS, Number 24 (2022), pp. 115–156

140 RAY, NICKERSON

Dataset Number Average Maximum Average
name of number of number of document

tuples keywords keywords length
200k 200,000 5.08 30 25.58
2mi 2,000,000 5.06 70 25.55

20mi 20,000,000 5.70 70 28.89

Table 3: Twitter datasets

Dataset Number Average Maximum Average
name of number of number of document

tuples keywords keywords length
Gaussian 1,000,000 8.5 16 41.45
Random 1,000,000 8.5 16 41.44
Skewed 1,000,000 8.5 16 41.44

Table 4: Synthetic datasets.

the query being generated, q, will contain all the keywords from an existing object o from
the dataset when, |q.W | ≤ |o.W |, or w keywords when, w = |o.W | and |q.W | > |o.W |.
Otherwise, there is a 95% chance that the query location will be randomly selected and the
keywords will be chosen randomly based on the dictionary for that particular dataset.

7.1.3 Environment setup

The experiments were conducted on a machine having 16 AMD Opteron processing cores,
each running at 2.8 GHz. The machine has 128 GB memory, and runs Red Hat Enterprise
Linux 4.8 64-bit OS. The key parameters of the experimental settings are in Table 6.

7.2 Update throughput of Pastri

Next we evaluate the update throughput of Pastri in isolation. Particularly, we examine the
effects of load-balancing algorithm, skew, and the number of partitions in pLSM store on
update throughput.

7.2.1 Load-balancing algorithm

Load-balancing is necessary to deal with data skew. In these experiments the impact of the
three load-balancing algorithms on the update throughput is evaluated. These algorithms
are: Work-stealing (Algorithm 4), Affinity (Algorithm 5), and Round-robin (Algorithm 3).
To isolate different contributing factors of the update throughput, the number of partitions

Dataset Number Average Maximum Average
name of number of number of document

tuples keywords keywords length
Wikipedia 280,000 390.14 7,770 1,018.39

Table 5: Wikipedia dataset.

www.josis.org

http://www.josis.org

TEMPORALLY RELEVANT PARALLEL TOP-K SPATIAL KEYWORD SEARCH 141

Parameter Settings
Grid resolution 64, 256, 1024, 4096
Updates (num. documents) 200000, 2000000, 20000000
Number of queries 1000, 1000000
k 5
Query radius 1 km, 10 km, 100 km
Number of query keywords 1, 2, 3, 4, 5
Query selectivity 1%, 5%, 10%, 20%, 40%
Half-life, t1/2 7 days

Table 6: Parameter settings (default parameters in bold).

in pLSM store is fixed to 1. Figure 9 shows the observed update throughput with Twitter
20mi dataset as the number of index update threads was varied. As can be seen, the update
throughput significantly improves when the number of threads increase from 1 to 2 with all
three algorithms. It remains relatively stable with 4 threads. Beyond 4 threads, the update
throughput either remains the same or is reduced. Among the 3 load-balancing algorithms,
Algorithm Affinity achieved the best update throughput in all cases. With Algorithm Work-
stealing, the update throughput significantly degrades with 8 index update threads due to
contention.

7.2.2 Grid resolution

Figure 10 shows the update throughput of Pastri for the three datasets as the grid resolution
(number of grid cells) is varied to 64, 256, 1024, and 4096 cells. The dataset was Twitter 20mi
and the number of partitions in pLSM store was fixed to 1 and the load-balancing algorithm
was set to Affinity. As shown in Figure 10, the update throughput remains relatively stable
irrespective of the grid resolution. The maximum and minimum difference between the
best and worst update throughputs are only 6% and 2% respectively. These results indicate
that Pastri’s load-balancing approach does a reasonably good job of handling data skew.

7.2.3 pLSM store partitions

In Sections 7.2.1 and 7.2.2 we examined the impact of load-balancing algorithms and grid
resolution on update throughput respectively, while keeping the number of partitions in
pLSM store fixed at 1. In this section, we present the results of experiments in which the
number of partitions in the pLSM store was varied, while the load-balancing algorithm
was set to Affinity and the grid resolution was fixed at 1024. Figure 11 shows the update
throughputs with the three Twitter datasets (200k, 2mi, and 20mi). The update through-
put significantly improves when the number of partitions increases from 1 to 2 and then
from 2 to 4. For instance, with dataset 2mi, the update throughput with 1, 2, and 4 parti-
tions are 133k, 187k, and 206k objects/second respectively. Beyond 4 partitions, the update
throughput does not improve, because it saturates the disk bandwidth. The throughput is
the lowest with the smallest dataset 200k, since it does not saturate the processing capacity.
The throughput with the largest dataset 20mi is higher than that of dataset 200k, but lower
than that of dataset 2mi. This occurs due to the disk bandwidth becoming the limiting
factor at high data volume.

JOSIS, Number 24 (2022), pp. 115–156

142 RAY, NICKERSON

(a) Gaussian

(b) Random

(c) Skewed

Figure 8: Distribution of the data points in each synthetic dataset (scaled).

7.3 Update performance comparison

We compare the update performance of Pastri against that of I3 index [54] 1 and IR-tree [18]
1. IR-tree is one of the first indexes to support efficient ad hoc TkSKQ. I3 is a more recently
proposed index. It significantly improves query performance over that of IR-tree. Unlike
Pastri, I3 and IR-tree do not support continuous updates, as they require the entire dataset
a priori. So, instead of update throughput, we compare the the data loading and index

1We thank the authors for generously providing the code .

www.josis.org

http://www.josis.org

TEMPORALLY RELEVANT PARALLEL TOP-K SPATIAL KEYWORD SEARCH 143

50000

60000

70000

80000

90000

100000

110000

1 2 4 6 8

Work-stealing

Affinity

Round-robin

U
p

d
a

te

th

ro
u

g
h

p
u

t
(#

re
co

rd
s/

se
co

n
d

)

Number of Index update worker threads

Figure 9: Update throughput of Pastri with different load-balancing algorithms (dataset
20mi).

50,000

60,000

70,000

80,000

90,000

100,000

110,000

64 256 1024 4096

Work-stealing

Affinity

Round-robin

U
p

d
a

te
 t

h
ro

u
g

h
p

u
t

(#
re

co
rd

s/
se

co
n

d
)

Number of grid cells

Figure 10: Update throughput of Pastri with different grid resolutions (dataset 20mi).

building time. For Pastri, the index building time is the total time to ingest the entire
dataset.

7.3.1 Index building cost

In this section we evaluate the index construction cost. Specifically, the indexes IR-tree
and I3 were constructed with the three Twitter datasets (200k, 2mi, 20mi), as well as the
synthetic datasets (Gaussian, Random, Skewed). The total data loading and index building
time are reported for these indexes. Since Pastri is a streaming spatio-textual index, it does
not require the entire dataset upfront and can ingest data and update index as new docu-
ments arrive. Hence, in the case of Pastri records were streamed using a driver program
for each of the datasets. The time to completely ingest all the records and update the index
is reported for Pastri. As shown in Figure 12, Pastri takes about 2 orders of magnitude less
time than that of IR-tree and an order of magnitude than that of I3 index. For instance, with
dataset 2mi (Figure 12(a)), Pastri takes 10 seconds, I3 needs 103 seconds and IR-tree takes

JOSIS, Number 24 (2022), pp. 115–156

144 RAY, NICKERSON

50000

70000

90000

110000

130000

150000

170000

190000

210000

1 2 4 6 8

Dataset 200k

Dataset 2mi

Dataset 20mi

U
p

d
a

te

th

ro
u

g
h

p
u

t
(#

 r
e

co
rd

s/
se

co
n

d
)

Number of pLSM store partitions

Figure 11: Update throughput of Pastri with different number of storage partitions.

4,073 seconds. This trend continues with the Wikipedia dataset (see Table 5). This dataset
is quite distinct, as it has significantly more words per document on average, compared to
other datasets. As can be seen in Figure 12(c), with this dataset the index construction with
Pastri is 7.7× faster than I3 and 84.7× faster than IR-tree.

7.3.2 Storage cost

Both I3 and IR-tree index use disk files to store both data and index. Pastri stores the data
in the disk-resident pLSM store. It builds a main memory index from the data and does
not actually store the index. The pLSM store uses compression, which significantly reduces
disk storage cost. In Figure 13, we compare the disk usage (MB) of Pastri against that of
IR-tree and I3 with the Twitter datasets. As can be seen, the storage requirements of Pastri
is significantly lower than the other two indexes. For instance, with the largest dataset
20mi, the storage cost of Pastri, I3 and IR-tree are 1,114 MB, 30,161 MB, and 37,063 MB
respectively. Results for synthetic datasets are omitted, as they show similar trends.

7.4 Parallel query throughput of Pastri

Since Pastri supports inter-query parallelism, here we demonstrate the multi-threaded
query performance, in terms of query throughput (number of queries per second). For
these experiments all parameters are set to their default Table 6 values except for the num-
ber of queries. One million TkSKQ queries were executed with Pastri for each of nine differ-
ent query execution thread counts of 1, 2, 4, 6, 8, 10, 12, 14, and 16. The query throughputs
achieved with the Twitter datasets are plotted in Figure 14 (in log scale). As can be seen in
Figure 14, the query throughput scaled well with the number of threads. For instance, with
the smallest dataset 200k, the throughputs were 3858, 6901, 13130, 18103, and 23110 queries
per second with 1, 2, 4, 8, and 16 threads, respectively. With the largest dataset 20mi, the
throughputs were 215, 457, 896, 1605, and 2573 queries per second with 1, 2, 4, 8, and 16
threads respectively. This suggests that for up to 16 threads, the throughputs scale linearly
with the number of threads. Results with the synthetic datasets are omitted.

www.josis.org

http://www.josis.org

TEMPORALLY RELEVANT PARALLEL TOP-K SPATIAL KEYWORD SEARCH 145

1

10

100

1,000

10,000

100,000

Pastri I³ IR-tree Pastri I³ IR-tree Pastri I³ IR-tree

Dataset 200k Dataset 2mi Dataset 20mi

R
u

n
ti

m
e

 (
se

co
n

d
s)

(a) Twitter Datasets

1

10

100

1,000

10,000

Pastri I³ IR-tree Pastri I³ IR-tree Pastri I³ IR-tree

Gaussian Random Skewed

R
u

n
ti

m
e

 (
se

co
n

d
s)

(b) Synthetic Datasets

(c) Wikipedia Dataset

Figure 12: Total index building time: Pastri vs. IR-tree vs. I3.

JOSIS, Number 24 (2022), pp. 115–156

146 RAY, NICKERSON

1

10

100

1,000

10,000

100,000

Pastri I³ IR-tree Pastri I³ IR-tree Pastri I³ IR-tree

Dataset 200k Dataset 2mi Dataset 20mi

D
is

k
u

sa
g

e
 (

M
B

)

Figure 13: Disk usage (MB): Pastri vs. IR-tree vs. I3—Twitter Datasets.

3858

6901
13130 16789 18103 18836 24472 21123 23110

1749

3481
6143 8558

10598 11690 14139 14253 14867

215

457
896

1292 1605
1890 2195 2427 2573

1

10

100

1,000

10,000

100,000

1 2 4 6 8 10 12 14 16

Dataset 200k

Dataset 2mi

Dataset 20mi

Q
u

e
ry

 t
h

ro
u

g
h

p
u

t
(#

 q
u

e
ri

e
s/

se
co

n
d

)

Number of query execution threads

Figure 14: Query throughput (multi-threaded scalability)—Twitter Datasets.

7.5 Query performance comparison

In this section, the goal is to analyze average query latency rather than query throughput.
All reported query latencies in this section are the average of 1,000 queries as explained
in section 7.1.2, with the remaining parameters having their default values except where
noted. Unlike Pastri, IR-tree and I3 indexes do not support multi-threaded query execu-
tion. Hence, we evaluate single threaded query performance of Pastri against these in-
dexes. Note that unless otherwise specified, temporally relevant top-k spatial keyword
query (TkSKQ) queries are evaluated. Hence, TkSKQ queries are used in the experiments
in Sections 7.5 through Section 7.5.3. In Section 7.6, experiments are conducted to evaluate
spatio-temporal textual top-k query (TkSTTQ) queries.

Figure 15(a) shows the TkSKQ query latency (in milliseconds) with Pastri, IR-tree, and
I3 index for the Twitter datasets. As can be observed in Figure 15(a), the average query
latency is significantly less with Pastri than that with the other two. Specifically, the single
threaded query latency with Pastri is one to two orders of magnitude lower than that of I3

index, and at least two orders of magnitude lower than that of IR-tree. With 20mi, which
is the largest dataset, the average query latency of Pastri is less than 5 milliseconds. With
the 20mi dataset, the query latency for I3 index is 173 milliseconds and for IR-tree it is 21

www.josis.org

http://www.josis.org

TEMPORALLY RELEVANT PARALLEL TOP-K SPATIAL KEYWORD SEARCH 147

0

1

10

100

1,000

10,000

100,000

Pastri I³ IR-tree Pastri I³ IR-tree Pastri I³ IR-tree

Dataset 200k Dataset 2mi Dataset 20mi

Q
u

e
ry

 la
te

n
cy

 (
m

il
lis

e
co

n
d

s)

(a) Twitter Datasets

1

10

100

1,000

10,000

Pastri I³ IR-tree Pastri I³ IR-tree Pastri I³ IR-tree

Gaussian Random Skewed

Q
u

e
ry

 la
te

n
cy

 (
m

ill
is

e
co

n
d

s)

(b) Synthetic Datasets

(c) Wikipedia Dataset

Figure 15: Average query latency: Pastri (single threaded) vs. IR-tree vs. I3.

seconds (or 21,092 milliseconds). An important factor behind Pastri’s query performance is
its in-memory index. Also, Pastri uses an in-memory cache of the recent document records,
which allows it to avoid I/O costs significantly.

To analyze the query processing cost of IR-tree we profiled it with JVM Monitor and
we show a breakdown of the time to execute queries in Figure 16. As Figure 16 shows,

JOSIS, Number 24 (2022), pp. 115–156

148 RAY, NICKERSON

Rtree.readNode

54%

InvertedFile.read

35%

InvertedFile.load

11%

InvertedFile.rankingSum

46%

Figure 16: IR-tree query execution time breakdown.

i3index.loadFreqDocs

95.6%

HashMap.put

0.3%
i3index.getCellUpperScore

2.8%

InvertedFile.rankingSum

0.3%
HashMap.clone

0.6%

i3index.getRootCandidate

0.4%
Other

4.4%

Figure 17: I3 query execution time breakdown.

54% of the time is spent in Rtree.readNode function, which involves fetching the contents of
Rtree nodes from disk. The remaining 46% is spent in processing the inverted file, of which
35% of the time is spent in the InvertedFile.read function. We do a similar profiling of query
processing by the I3 index and show the breakdown of execution time in Figure 17. With
this, 95.6% of the time is spent in loading the index from disk.

The average query latencies comparing the indexes for the synthetic datasets are shown
in Figure 15(b). Interestingly, for the dataset Skewed the query latency with I3 is even
worse than that with IR-tree. The text keywords are chosen from a Zipf distribution, so a
few keywords occur very frequently in these synthetic datasets. Our analysis shows that I3

spends about 70% of the query execution time in exploring the cells at different quad-tree
levels in its attempt to do filtering, which leads to increased query latency.

For the Wikipedia dataset, the average query latency of TkSKQ queries with Pastri is
compared against those with I3 and IR-tree. As can be seen in Figure 15(c), Pastri is 20.4×
faster than I3 and 18.9× faster than IR-tree respectively. As in dataset Skewed, IR-tree
performs better than I3 in the Wikipedia dataset.

7.5.1 Vary selectivity

The selectivity of TkSKQ queries are varied in these experiments. The default selectivity
used elsewhere is 20%. The higher the selectivity, the more processing cost that will be

www.josis.org

http://www.josis.org

TEMPORALLY RELEVANT PARALLEL TOP-K SPATIAL KEYWORD SEARCH 149

0

1

10

100

1,000

Pastri I³ Pastri I³ Pastri I³ Pastri I³ Pastri I³

1% 5% 10% 20% 40%

Q
u

e
ry

 la
te

n
cy

 (
m

ill
is

e
co

n
d

s)

Figure 18: Average query latency (vary selectivity)—Twitter Datasets.

0

1

10

100

1,000

Pastri I³ Pastri I³ Pastri I³ Pastri I³ Pastri I³

1 2 3 4 5

Q
u

e
ry

 la
te

n
cy

 (
m

il
lis

e
co

n
d

s)

Figure 19: Average query latency (vary number of keywords)—Twitter Datasets.

incurred, as it increases the number of potential matching documents. In Figure 18 the
average query latency is reported while varying 1%, 5%, 10%, 20%, and 40% selectivity. As
can be seen, there is a clear trend showing an increase in query latency with the selectivity.
However, with Pastri the magnitude of the overall increase is still quite small. Note that
an increase in selectivity from 5% to 40% results in the average latency to rise from 1.6
milliseconds to 7.5 milliseconds only even with the largest dataset 20mi.

7.5.2 Vary number of query keywords

Next, we vary the number of query keywords and observe the average latency of TkSKQ
queries. By default, in all other experiments the number of query keywords are set to
5. Figure 19 shows the average query latencies for the 3 datasets with number of query
keywords varied 1, 2, 3, 4, and 5. As can be seen, the query latency decreases as the number
of keywords are reduced. However, the magnitude of this different is only significant for
the largest dataset 20mi.

JOSIS, Number 24 (2022), pp. 115–156

150 RAY, NICKERSON

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

Walking (1 km) Running (10 km) Driving (100 km)

Dataset 200k

Dataset 2mi

Dataset 20mi

Q
u

e
ry

 l
a

te
n

cy
 (

m
il

li
se

co
n

d
)

Query radius

Figure 20: Average query latency (vary query radius).

7.5.3 Vary query radius

The default query radius used in all experiments involving TkSKQ query performance is
100 km. Next we vary the query radius as follows: 1 km, 10 km, and 100 km. These scenar-
ios can be considered as use-cases for 3 different kinds of moving objects (as data sources):
walking, biking, and driving, respectively. These parameters have natural correspondence
to human travel queries (e.g. in Google maps). In Figure 20, we plot the average query
latencies for these parameters with the Twitter datasets. As can be seen, the query latency
decreases as the query radius gets smaller. However, even for the largest dataset 20mi and
for maximum radius of 100 km, the latency is only 4.2 milliseconds. In fact, at this radius,
the query latencies for the other two datasets (200k and 2mi) are below 1 millisecond. We
believe that such latencies are quite acceptable for practical purposes. Moreover, in a real-
world use case involving human travel, a radius longer than the Driving scenario may not
occur, and even if it appears, the query latency will be small enough to be acceptable.

7.6 Query performance evaluation (TkSTTQ)

Here, we evaluate top-k spatio-temporal textual query (TkSTTQ) performance. In these
experiments, we observe the average query latencies, as we vary the number of query
keywords (as 1, 2, 3, 4, and 5) for each of the three Twitter datasets. As can be seen in
Figure 21, the overall trend is that the query latency increases with the number of query
keywords. However, even with 5 keywords, the query latencies are quite low (less than 1
millisecond), particularly for datasets 200k and 2mi. Even with the largest dataset 20mi,
the query latency is 1.5 milliseconds with 1 keyword, and 9 milliseconds with 5 keywords.

8 Conclusion

Due to the rising volume of spatial-textual data, top-k spatial keyword search queries (Tk-
SKQ) are growing in importance. There is a need to efficiently support these queries. Al-
though several spatio-textual indexes support ad hoc (snapshot) TkSKQ, they are not able
to operate on continuously generated data, as they need to build the index a priori. Re-

www.josis.org

http://www.josis.org

TEMPORALLY RELEVANT PARALLEL TOP-K SPATIAL KEYWORD SEARCH 151

Figure 21: Average query latency (vary number of keywords) of TkSTTQ.

cently, a few systems have been proposed that can handle continuously generated docu-
ment streams. However, these systems are not suitable to efficiently process queries while
considering both document ranking based on textual similarity and spatial distance. More-
over, they do not consider the temporal relevance of the documents, even though we tend
to value more recent objects, than older objects. Also, these indexes do not exploit paral-
lelism well.

To address these issues, we introduced an integrated system for processing continu-
ously generated document streams. Our system features a novel spatio-textual index,
called Pastri. It utilizes a dynamic ranking scheme, DRTF-IDF, in order to retrieve doc-
uments that are the most temporally relevant based on a query criteria. Pastri supports
multi-threaded processing of updates and query execution. We conducted extensive ex-
perimental evaluation with real-world datasets and synthetic datasets (that we created).
Experimental results demonstrate that our system supports high update throughput with
document streams and its ad hoc (snapshot) TkSKQ query latency is significantly lower
than existing indexing approaches. We also show that the amortized cost to insert a data

item into the our system is Θ(
log2

N
BP

BP) I/Os, where N is the number of data items, P is the
number of partitions in the pLSM store, and a block of data transferred to external memory
holds B data items. Pastri also supports efficient top-k spatio-temporal textual (TkSTTQ)
queries, demonstrating its applicability to a wider range of multi-dimensional search prob-
lems.

Acknowledgments

This research was supported in part by Natural Sciences and Engineering Research
(NSERC) Discovery Grants 36866-2011-RGPIN (Nickerson) and RGPIN-2016-03787 (Ray)
and NBIF Start-Up Grant (Ray), and by the University of New Brunswick Faculty of Com-
puter Science

JOSIS, Number 24 (2022), pp. 115–156

152 RAY, NICKERSON

References

[1] Dictionary encoding. https://en.wikipedia.org/wiki/Dictionary coder, 2020. Ac-
cessed: 2020-11-11.

[2] Internet live stats. www.internetlivestats.com, 2021. Accessed: 2021-02-16.

[3] AGGARWAL, A., AND VITTER, JEFFREY, S. The input/output complexity of sort-
ing and related problems. Communications of the ACM 31, 9 (1988), 1116–1127.
doi:10.1145/48529.48535.

[4] ALMASLUKH, A., AND MAGDY, A. Evaluating spatial-keyword queries on streaming
data. In Proceedings of the 26th ACM SIGSPATIAL International Conference on Advances
in Geographic Information Systems (2018), pp. 209–218. doi:10.1145/3274895.3274936.

[5] ALMASLUKH, A., AND MAGDY, A. Temporal geo-social personalized search over
streaming data. In Proceedings of the 27th ACM SIGSPATIAL International Con-
ference on Advances in Geographic Information Systems (2019), ACM, pp. 189–198.
doi:10.1145/3347146.3359073.

[6] ARMEN, C. Bounds on the separation of two parallel disk models. In Proceedings
of the Fourth Workshop on I/O in Parallel and Distributed Systems: Part of the Federated
Computing Research Conference (New York, NY, USA, 1996), IOPADS ’96, ACM, pp. 122–
127. doi:10.1145/236017.236044.

[7] ARSENEAU, Y., GAUTAM, S., NICKERSON, B., AND RAY, S. STILT: Unifying spatial,
temporal and textual search using a generalized multi-dimensional index. In Inter-
national Conference on Scientific and Statistical Database Management (SSDBM) (2020).
doi:10.1145/3400903.3400927.

[8] ASHAGRIE, M., TEKLI, J., TADDESSE, F. G., CHBEIR, R., AND TEKLI, G. Generic
metadata representation framework for social-based event detection, description, and
linkage. Knowledge-Based Systems 188 (2019), 104817. doi:10.1016/j.knosys.2019.06.025.

[9] AsterixDB. https://github.com/apache/asterixdb, 2018.

[10] BENDER, M. A., FARACH-COLTON, M., JANNEN, W., JOHNSON, R., KUSZMAUL,
B. C., PORTER, D. E., YUAN, J., AND ZHAN, Y. An introduction to Bε-trees and
write-optimization. login; magazine 40, 5 (2015).

[11] BUN, K. K., AND ISHIZUKA, M. Topic extraction from news archive using TF*PDF
algorithm. In Proceedings of the Third International Conference on Web Information Systems
Engineering, 2002. (2002), pp. 73–82. doi:10.1109/WISE.2002.1181645.

[12] BUSCH, M., GADE, K., LARSON, B., LOK, P., LUCKENBILL, S., AND LIN, J. J. Early-
bird: Real-time search at Twitter. In 2012 IEEE 28th International Conference on Data
Engineering (2012), pp. 1360–1369. doi:10.1109/ICDE.2012.149.

[13] CHEN, L., CONG, G., CAO, X., AND TAN, K. Temporal spatial-keyword top-k pub-
lish/subscribe. In 2015 IEEE 31st International Conference on Data Engineering (2015),
pp. 255–266. doi:10.1109/ICDE.2015.7113289.

www.josis.org

https://en.wikipedia.org/wiki/Dictionary_coder
www.internetlivestats.com
http://dx.doi.org/10.1145/48529.48535
http://dx.doi.org/10.1145/3274895.3274936
http://dx.doi.org/10.1145/3347146.3359073
http://dx.doi.org/10.1145/236017.236044
http://dx.doi.org/10.1145/3400903.3400927
http://dx.doi.org/10.1016/j.knosys.2019.06.025
https://github.com/apache/asterixdb
http://dx.doi.org/10.1109/WISE.2002.1181645
http://dx.doi.org/10.1109/ICDE.2012.149
http://dx.doi.org/10.1109/ICDE.2015.7113289
http://www.josis.org

TEMPORALLY RELEVANT PARALLEL TOP-K SPATIAL KEYWORD SEARCH 153

[14] CHEN, L., CONG, G., JENSEN, C. S., AND WU, D. Spatial keyword query processing:
an experimental evaluation. Proceedings of the VLDB Endowment 6, 3 (2013), 217–228.
doi:10.14778/2535569.2448955.

[15] CHENG, S., ARVANITIS, A., CHROBAK, M., AND HRISTIDIS, V. Multi-Query Diver-
sification in Microblogging Posts. In Proceedings of 17th International Conference on Ex-
tending Database Technology (EDBT) (2014), pp. 133–144.

[16] CHOUDHURY, F. M., CULPEPPER, J. S., BAO, Z., AND SELLIS, T. Batch processing
of top-k spatial-textual queries. ACM Transactions on Spatial Algorithms and Systems
(TSAS) 3, 4 (2018), 1–40. doi:10.1145/3196155.

[17] CHRISTOFORAKI, M., HE, J., DIMOPOULOS, C., MARKOWETZ, A., AND SUEL, T.
Text vs. Space: Efficient Geo-search Query Processing. In Proceedings of the 20th ACM
international conference on Information and knowledge management (2011), pp. 423–432.
doi:10.1145/2063576.2063641.

[18] CONG, G., JENSEN, C. S., AND WU, D. Efficient Retrieval of the Top-k Most Rel-
evant Spatial Web Objects. Proceedings of the VLDB Endowment 2, 1 (2009), 337–348.
doi:10.14778/1687627.1687666.

[19] http://www.dis.uniroma1.it/challenge9/, 2006.

[20] ERRA, U., SENATORE, S., MINNELLA, F., AND CAGGIANESE, G. Approximate TF–IDF
based on topic extraction from massive message stream using the GPU. Information
Sciences 292 (2015), 143–161. doi:10.1016/j.ins.2014.08.062.

[21] FENG, W., ZHANG, C., ZHANG, W., HAN, J., WANG, J., AGGARWAL, C. C., AND
HUANG, J. STREAMCUBE: hierarchical spatio-temporal hashtag clustering for event
exploration over the twitter stream. In 2015 IEEE 31st international conference on data
engineering (2015), pp. 1561–1572. doi:10.1109/ICDE.2015.7113425.

[22] GROVER, R., AND CAREY, M. J. Data ingestion in AsterixDB. In Proceedings of 18th
International Conference on Extending Database Technology (EDBT) (2015), pp. 605–616.
doi:10.5441/002/edbt.2015.61.

[23] GUO, L., SHAO, J., AUNG, H. H., AND TAN, K.-L. Efficient continuous top-
k spatial keyword queries on road networks. GeoInformatica 19, 1 (2014), 29–60.
doi:10.1007/s10707-014-0204-8.

[24] HOANG-VU, T.-A., VO, H. T., AND FREIRE, J. A unified index for spatio-temporal
keyword queries. In Proceedings of the 25th ACM International on Conference on Informa-
tion and Knowledge Management (2016), pp. 135–144. doi:10.1145/2983323.2983751.

[25] KHODAEI, A., SHAHABI, C., AND LI, C. Hybrid indexing and seamless ranking of
spatial and textual features of web documents. In International Conference on Database
and Expert Systems Applications (2010), pp. 450–466. doi:10.1007/978-3-642-15364-8_37.

[26] MAGDY, A., ALARABI, L., AL-HARTHI, S., MUSLEH, M., GHANEM, T. M., GHANI,
S., AND MOKBEL, M. F. Taghreed: A system for querying, analyzing, and visual-
izing geotagged microblogs. In Proceedings of the 22nd ACM SIGSPATIAL Interna-
tional Conference on Advances in Geographic Information Systems (2014), pp. 163–172.
doi:10.1145/2666310.2666397.

JOSIS, Number 24 (2022), pp. 115–156

http://dx.doi.org/10.14778/2535569.2448955
http://dx.doi.org/10.1145/3196155
http://dx.doi.org/10.1145/2063576.2063641
http://dx.doi.org/10.14778/1687627.1687666
http://www.dis.uniroma1.it/challenge9/
http://dx.doi.org/10.1016/j.ins.2014.08.062
http://dx.doi.org/10.1109/ICDE.2015.7113425
http://dx.doi.org/10.5441/002/edbt.2015.61
http://dx.doi.org/10.1007/s10707-014-0204-8
http://dx.doi.org/10.1145/2983323.2983751
http://dx.doi.org/10.1007/978-3-642-15364-8_37
http://dx.doi.org/10.1145/2666310.2666397

154 RAY, NICKERSON

[27] MAGDY, A., MOKBEL, M. F., ELNIKETY, S., NATH, S., AND HE, Y. Mer-
cury: A memory-constrained spatio-temporal real-time search on microblogs. In
2014 IEEE 30th International Conference on Data Engineering (2014), pp. 172–183.
doi:10.1109/ICDE.2014.6816649.

[28] MAHMOOD, A., AND AREF, W. G. Query processing techniques for big spatial-
keyword data. In Proceedings of the 2017 ACM International Conference on Management
of Data (2017), SIGMOD ’17, pp. 1777–1782. doi:10.1145/3035918.3054773.

[29] MAHMOOD, A. R., ALY, A. M., AND AREF, W. G. FAST: frequency-aware in-
dexing for spatio-textual data streams. In 34th IEEE International Conference on
Data Engineering, ICDE 2018, Paris, France, April 16-19, 2018 (2018), pp. 305–316.
doi:10.1109/ICDE.2018.00036.

[30] MAHMOOD, A. R., ALY, A. M., QADAH, T., REZIG, E. K., DAGHISTANI, A., MAD-
KOUR, A., ABDELHAMID, A. S., HASSAN, M. S., AREF, W. G., AND BASALAMAH,
S. Tornado: A distributed spatio-textual stream processing system. Proceedings of the
VLDB Endowment 8, 12 (2015), 2020–2023. doi:10.14778/2824032.2824126.

[31] MAHMOOD, A. R., DAGHISTANI, A., ALY, A. M., TANG, M., BASALAMAH, S.,
PRABHAKAR, S., AND AREF, W. G. Adaptive processing of spatial-keyword data
over a distributed streaming cluster. In ACM SIGSPATIAL International Conference
on Advances in Geographic Information Systems (2018), SIGSPATIAL ’18, pp. 219–228.
doi:10.1145/3274895.3274932.

[32] MARKOWETZ, A., YANG, Y., AND PAPADIAS, D. Keyword Search on Relational Data
Streams. In SIGMOD ’07: Proceedings of the 2007 ACM SIGMOD international conference
on Management of data (2007), pp. 605–616. doi:10.1145/1247480.1247548.

[33] http://norvig.com/ngrams/count 1w100k.txt, 2011.

[34] NEGI, D., RAY, S., AND LU, R. Pystin: Enabling secure LBS in smart cities with
privacy-preserving top-k spatial-textual query. IEEE Internet of Things Journal 6, 5
(2019), 7788–7799. doi:10.1109/JIOT.2019.2902483.

[35] O’NEIL, PATRICK AND CHENG, EDWARD AND GAWLICK, DIETER AND O’NEIL,
ELIZABETH. The Log-structured Merge-tree (LSM-tree). Acta Informatica 33, 4 (1996),
351–385. doi:10.1007/s002360050048.

[36] PONTE, J. M., AND CROFT, W. B. A Language Modeling Approach to Information
Retrieval. In SIGIR (1998), pp. 275–281.

[37] RAY, S., AND NICKERSON, B. G. Dynamically ranked top-k spatial keyword search. In
Proceedings of the Third International ACM SIGMOD Workshop on Managing and Mining
Enriched Geo-Spatial Data (2016), pp. 6:1–6:6. doi:10.1145/2948649.2948655.

[38] RAY, S., AND NICKERSON, B. G. Improving parallel performance of temporally
relevant top-k spatial keyword search. In ACM SIGSPATIAL Workshop on Recom-
mendations for Location-based Services and Social Networks (2018), LocalRec, pp. 5:1–5:4.
doi:10.1145/3282825.3282830.

www.josis.org

http://dx.doi.org/10.1109/ICDE.2014.6816649
http://dx.doi.org/10.1145/3035918.3054773
http://dx.doi.org/10.1109/ICDE.2018.00036
http://dx.doi.org/10.14778/2824032.2824126
http://dx.doi.org/10.1145/3274895.3274932
http://dx.doi.org/10.1145/1247480.1247548
http://norvig.com/ngrams/count_1w100k.txt
http://dx.doi.org/10.1109/JIOT.2019.2902483
http://dx.doi.org/10.1007/s002360050048
http://dx.doi.org/10.1145/2948649.2948655
http://dx.doi.org/10.1145/3282825.3282830
http://www.josis.org

TEMPORALLY RELEVANT PARALLEL TOP-K SPATIAL KEYWORD SEARCH 155

[39] REED, J. W., ELMORE, M. T., POTOK, T. E., HURSON, A. R., JIAO, Y., AND KLUMP,
B. A. TF-ICF: A new term weighting scheme for clustering dynamic data streams.
In 2006 5th International Conference on Machine Learning and Applications (ICMLA’06)
(2006), pp. 258–263. doi:10.1109/ICMLA.2006.50.

[40] ROCHA-JUNIOR, J. A. B., GKORGKAS, O., JONASSEN, S., AND NØRVÅG, K. Efficient
Processing of Top-k Spatial Keyword Queries. In International Symposium on Spatial
and Temporal Databases (2011), pp. 205–222. doi:10.1007/978-3-642-22922-0_13.

[41] SALTON, G., AND BUCKLEY, C. Term-weighting approaches in automatic text re-
trieval. Information processing & management 24, 5 (1988), 513–523. doi:10.1016/0306-
4573(88)90021-0.

[42] SALTON, G., WONG, A., AND YANG, C. S. A Vector Space Model for Automatic In-
dexing. Communications of the ACM 18, 11 (1975), 613–620. doi:10.1145/361219.361220.

[43] SCULLY, J. Serving over 1 billion documents per day with
docstore v2. https://engineering.indeedblog.com/blog/2013/10/
serving-over-1-billion-documents-per-day-with-docstore-v2/, 1988.

[44] SKOVSGAARD, A., SIDLAUSKAS, D., AND JENSEN, C. S. Scalable top-k spatio-
temporal term querying. In ICDE (2014), pp. 148–159.

[45] SOHAIL, A., CHEEMA, M. A., AND TANIAR, D. Geo-social temporal top-k queries in
location-based social networks. In Databases Theory and Applications. ADC 2020 (2020),
Springer International Publishing, pp. 147–160.

[46] TEKLI, J., CHBEIR, R., TRAINA, A. J. M., AND TRAINA, C. SemIndex+: A semantic
indexing scheme for structured, unstructured, and partly structured data. Knowledge-
Based Systems 164 (2019), 378–403. doi:10.1016/j.knosys.2018.11.010.

[47] THEODORIDIS, Y., SILVA, J. R. O., AND NASCIMENTO, M. A. On the generation
of spatiotemporal datasets. In International Symposium on Spatial Databases (1999),
pp. 147–164. doi:10.1007/3-540-48482-5_11.

[48] VAID, S., JONES, C. B., JOHO, H., AND SANDERSON, M. Spatio-textual indexing for
geographical search on the web. In International Symposium on Spatial and Temporal
Databases (2005), pp. 218–235. doi:10.1007/11535331_13.

[49] VITTER, J. S. Algorithms and data structures for external memory. Foundations and
Trends® in Theoretical Computer Science 2, 4 (2008), 305–474. doi:10.1561/0400000014.

[50] VITTER, J. S., AND SHRIVER, E. A. Algorithms for parallel memory, I: Two-level
memories. Algorithmica 12, 2-3 (1994), 110–147. doi:10.1007/BF01185207.

[51] WANG, X., ZHANG, Y., ZHANG, W., LIN, X., AND WANG, W. AP-Tree: efficiently
support location-aware publish/subscribe. The VLDB Journal 24, 6 (2015), 823–848.
doi:10.1007/s00778-015-0403-4.

[52] https://dumps.wikimedia.org/enwiki/latest/, 2018.

JOSIS, Number 24 (2022), pp. 115–156

http://dx.doi.org/10.1109/ICMLA.2006.50
http://dx.doi.org/10.1007/978-3-642-22922-0_13
http://dx.doi.org/10.1016/0306-4573(88)90021-0
http://dx.doi.org/10.1016/0306-4573(88)90021-0
http://dx.doi.org/10.1145/361219.361220
https://engineering.indeedblog.com/blog/2013/10/serving-over-1-billion-documents-per-day-with-docstore-v2/
https://engineering.indeedblog.com/blog/2013/10/serving-over-1-billion-documents-per-day-with-docstore-v2/
http://dx.doi.org/10.1016/j.knosys.2018.11.010
http://dx.doi.org/10.1007/3-540-48482-5_11
http://dx.doi.org/10.1007/11535331_13
http://dx.doi.org/10.1561/0400000014
http://dx.doi.org/10.1007/BF01185207
http://dx.doi.org/10.1007/s00778-015-0403-4

156 RAY, NICKERSON

[53] YAN, H., DING, S., AND SUEL, T. Inverted Index Compression and Query Processing
with Optimized Document Ordering. In Proceedings of the 18th international conference
on World wide web (2009), pp. 401–410. doi:10.1145/1526709.1526764.

[54] ZHANG, D., TAN, K.-L., AND TUNG, A. K. H. Scalable Top-k Spatial Keyword
Search. In Proceedings of the 16th international conference on extending database technology
(2013), pp. 359–370. doi:10.1145/2452376.2452419.

www.josis.org

http://dx.doi.org/10.1145/1526709.1526764
http://dx.doi.org/10.1145/2452376.2452419
http://www.josis.org

	Introduction
	Related Work and background
	Spatio-textual Index
	Indexing spatio-textual data streams
	Ranking streaming textual documents

	Problem statement: temporally relevant top-k spatial keyword query
	Temporally relevant dynamic ranking
	Spatial Match
	Textual Match
	Dynamic Ranking

	Example

	Problem statement: spatio-temporal textual top-k query
	Pastri spatio-textual index
	System organization
	Index structure
	Storage structure
	Update processing
	Load-balancing and handling skew

	Query processing

	Analysis
	Insertion
	Query

	Evaluation
	Experimental setup
	Datasets
	Query set
	Environment setup

	Update throughput of Pastri
	Load-balancing algorithm
	Grid resolution
	pLSM store partitions

	Update performance comparison
	Index building cost
	Storage cost

	Parallel query throughput of Pastri
	Query performance comparison
	Vary selectivity
	Vary number of query keywords
	Vary query radius

	Query performance evaluation (TkSTTQ)

	Conclusion

