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Abstract: Mobile network operator (MNO) data are a rich data source for various topics in
official statistics, such as present population, mobility, migration, and tourism. Estimating
the geographic location of mobile devices is an essential step for statistical inference. Most
studies use Voronoi tessellation for this, which is based on the assumption that mobile de-
vices are always connected to the nearest radio cell. We propose an alternative location esti-
mation method following a Bayesian approach and using a physical model for the received
signal strength. Our Bayesian framework allows for different modules of prior knowl-
edge about where devices are expected to be, and different modules for the likelihood of
connection given a geographic location. We discuss and compare the use of several prior
modules, including one that is based on land use. For the likelihood module we propose
a signal strength model using radio cell properties such as antenna height, propagation
direction, and power. Using Bayes’ rule, we derive a posterior probability distribution that
is an estimate of the geographic location, which can be used for further statistical inference.
We describe the method and provide illustrations of a fictional example that resembles a
real-world situation. The method has been implemented in the R packages mobloc and
mobvis, which are briefly described.
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1 Introduction

Mobile network operator (MNO) data have shown to be a rich potential source for official
statistics, in particular on present population [2,11,12,26,52,68], mobility [3,10,13,21,23,45,
66,69,72], commuting [29,70], migration [32,35,67], and tourism [12]. The main task in these
areas is to estimate human mobility patterns at large scale to support a wide range of policy
issues, for instance, sustainable urban transport planning to mitigate climate change [14,
35], or monitoring the spread of the COVID-19 pandemic [4, 19, 42].

The reason why MNO data is widely considered a gold mine for estimating human
mobility is the lack of good alternatives. Traditional surveys on human mobility are useful
when the sample size is sufficiently large, but are typically costly and time consuming [8].
Geotagged social media data are a good source for mobility research, but the outcomes
may suffer from population bias [34]. MNO data, on the other hand, are readily available,
since they are used to facilitate mobile phone communication. Detailed spatial-temporal
mobility patterns can be obtained from MNO data [8], also in combination with other
sources [8, 64].

A key step in statistical inference on MNO data is the estimation of the geographic
location of mobile devices [49,52]. Two types of MNO data are required for statistical infer-
ence: cell plan data, which contain information about the mobile communication network
infrastructure, and event data, which are data from transaction events between the network
and mobile devices. The latter type of data may contain network measurement variables
such as Timing Advance which help to estimate the geographic location of devices more
accurately.

However, the availability of location related information in event data (as supplied by
MNOs) is often limited [58]. The only location related variable that is always available is
the identification number of the serving cell. This poses a problem for statistical inference
from MNO data based on existing methods which usually require network measurement
data [9, 24, 25, 71]. This contradiction between data availability on the one hand, and data
requirements of existing methods on the other, implies a need to explore methods with
lower data requirements. In particular, we aim to understand whether cell plan data can
be sufficient to estimate geographic location.

The main objective of this paper is to design an estimation method that is flexible re-
garding the type of data used. In other words, the method should work if only cell plan
data are provided, and should provide better estimates when network measurement data
are available. To this end, we propose a Bayesian location estimation method that, as a
primary step, uses a physical model of the received signal strength based on cell plan data.
Furthermore, auxiliary data, such as land use, may have predictive value about the location
of devices. We explore how such auxiliary data can be used as prior information.

The majority of studies on MNO data use Voronoi tessellation [12] to distribute the
geographic location of logged events.1 However, this approach assumes that a device is
always connected to the nearest cell, and therefore ignores cell properties, such as propa-
gation direction, power, height, and tilt, as well as overlap in coverage areas of cells due to
load balancing (if a cell has reached full capacity, neighbouring cells that also have coverage
are able to take over communication with mobile devices). Finally, it does not take into ac-
count where devices are expected to be. The Bayesian location estimation approach that we

1The geographic area is divided into Voronoi regions such that each Voronoi region corresponds to the geo-
graphic location of a cell and each point in that region is closer to that cell tower than to any other cell.
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propose allows us to provide a remedy for these shortcomings. Combining this approach
with a physical model of the received signal strength additionally avoids the requirement
of network measurement data which troubles existing Bayesian approaches.

In sum, the contributions of this paper are as follows. First, we develop a signal strength
model that uses physical properties of the cells, such as height, propagation direction, and
tilt to estimate the propagation per cell. Second, we develop a signal dominance model that
additionally takes load balancing into account. We use the signal strength and dominance
model for the likelihood function. Third, we explore the use of non-uniform prior informa-
tion. To that end, we develop a prior that is based on land use, a prior that uses (modelled)
signal strength data, and a composite prior in which several priors can be mixed. Fourth,
we develop a method that updates the posterior using Timing Advance data to ensure that
our approach also works with more detailed event data. Fifth, we provide an overview of
validation methods that we recommend for further research.2

We would like the methods to be applied, tested, and if needed improved as much as
possible in future research studies. Therefore we implement the methods as open source
software. More specifically, the calculations are implemented in the R package mobloc [60]
and visualization tools that are used to analyse and present the results are implemented in
the R package mobvis [61].

The outline of the paper is as follows. Background and related work are described in
Section 2. We introduce the signal strength model in Section 3, and in Section 4 we fur-
ther introduce the signal dominance model. We present our Bayesian estimation method
as a modular framework in Section 5. The likelihood, prior, and timing advance module
will be discussed in Sections 5.1, 5.2, and 5.3 respectively. A small example of the frame-
work is provided in Section 5.4. How this framework can be used in statistical inference
is discussed in Section 5.5. In Section 6 we provide an overview of validation methods. In
Section 7 we illustrate our approach with a fictional application. The implementation is
described in Section 8. Conclusion and discussion are provided in Section 9.

2 Background and related work

2.1 Mobile network operator data

A mobile communication network is also called a cellular network, where each cell enables
mobile communication for a specific land area. The cell plan specifies the geographical
location of the cells and their physical properties. An MNO often facilitates mobile com-
munication via multiple networks; one for each generation (e.g. 3G, 4G, or 5G), which may
also serve at different frequency bands (e.g. 900 , 1800 , and 2100Hz).

Two types of cells can be distinguished [44]: a macro cell that is placed in a cell tower
or on top of a roof, which has a range of about 50 kilometers in rural areas, and a small cell
that is used to enable mobile communication inside buildings and in dense urban areas,
and has a theoretical range of two kilometers.3 An important cell property is the propa-
gation direction. A cell can be directional or omnidirectional. In practice, most real-world

2Our original plan was to validate the methods with ground truth data. Although some validation has been
done in several internal studies [58], the results could not be shared for reasons of confidentiality.

3A small cell is a general name for micro, pico, and femto cells, which have theoretical ranges of respectively
2000, 200, and 20 meters.
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deployed macro cells are directional, often covering an angle of about 120 degrees whereas
small cells are usually omnidirectional.

We use the following cell plan variables for the signal strength model: cell identification
number, geographic location, height, directionality (directional or omnidirectional), az-
imuth angle (propagation direction; for directional cells only), elevation angle (also known
as tilt), power, vertical beam width, and horizontal beam width.

There are generally two types of event data, depending on which transaction events
are contained. Event data that are used to calculate the costs in order to bill customers
are called Call Detail Records (CDR), which contain events related to active mobile phone
use, such as initiating a call 4. Event data that also contains passive events such as location
updates, are called signalling data. These data are used by the MNO for network analysis
and optimization. Signalling data are usually much richer than CDR data and are therefore
recommended for statistical inference.

Network measurement variables that may be included in event data are Timing Ad-
vance (also known as round-trip time, which is an indication of the distance between cell
and device), Received Signal Strength (RSS), and the Signal to Interference plus Noise Ratio
(SINR).

2.2 Voronoi tesselation

A couple of variations of the Voronoi algorithm have been proposed to overcome some of
the limitations mentioned in Section 1 [11,18,50]. One improvement is to shift the locations
of the Voronoi points from the cell tower locations towards the direction of propagation.
Alternatively, when the service area is known for each cell, i.e. the area which is served by
the cell, the location of the centroids of these service areas can be used as Voronoi points.
Another improvement is to create a Voronoi tessellation for macro cells, and subsequently
assign each small cell to the Voronoi region they are located in. The Voronoi method can be
extended with auxiliary data sources, such as land use, to improve the geographic location
of devices [22].

2.3 Bayesian location estimation

Several Bayesian estimation methods have been proposed as an alternative to the Voronoi
method [24, 25, 41, 71]. The basic principle is that prior information about the expected lo-
cation of devices is combined with a likelihood, which is a probability that a device is con-
nected to a certain cell given its actual location, taking into account the overlap of nearby
cells. The outcome of a Bayesian estimation method is a posterior, which is an estimate of
the location of a device given that it is connected to a certain cell. This location is not a
single point, but a geospatial distribution that captures the uncertainty.

The Bayesian estimation methods proposed by [24, 25, 71] require specific radio mea-
surement data on event level, namely the variables RSS, SINR, and Timing Advance, but
these are often unavailable in practice [39]. In contrast, the estimation method we pro-
pose does not require any of these variables, and can therefore be applied in case network

4CDR data contain records about calls (initiating and receiving), SMSes (sending and receiving), and mobile
data usage. Note that in several studies the term CDR is used for data that only contains call and SMS events, and
alternative terms Data Detail Records (DDR) or Event Data Records (EDR) are used for data that also include mobile
data usage events.
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measurement data are unavailable. We illustrate how network measurement data (Timing
Advance) can be used optionally to improve the estimations.

Recently, another Bayesian estimation method has been proposed [41] that seems sim-
ilar to ours at first glance. However, a crucial difference is that this method follows an
empirical approach; from aggregated Timing Advance data, the geographic distribution of
connections in the past are extracted and used in the connection likelihood. Our approach
is more theoretical, because it uses a propagation model for the likelihood that does not use
any empirical data. Furthermore, we use Timing Advance data (if available) in a different
way; we estimate the location of a device given the identification number of the cell and
the measured Timing Advance value.

The proposed Bayesian methods assume a uniform distribution for the prior, which
means no additional information is used about where devices are expected to be. While
a uniform prior generally speaking represents an "objective" prior, we argue this is not
always true for location estimation of mobile phones.

2.4 Spatial density estimation

Our method is focused on the location estimation of a single device, including its uncer-
tainty. For static applications, such as the estimation of the present population, the next
step in statistical inference is to estimate the spatial density of devices. For this purpose,
two methods have been introduced recently [31,48,50] that use the likelihood probabilities
presented in this paper (created with the signal strength and signal dominance model),
which are also referred to as emission probabilities.5 To estimate the spatial density of de-
vices, rather than the location of a single device, both methods also require the number of
connected devices per cell at a certain time, which can be obtained from event data.

The first method is the Maximum Likelihood Estimator (MLE) [31, 50]. The locations of
the devices are assumed to be generated by a random (multinomial [50] or Poisson [31])
process that uses the emission probabilities. The maximum likelihood is a spatial density
that best explains the observed data, which in this case consist of the number of connected
devices per cell.

A downside of the MLE is that is does not take prior information into account. An
enhancement of the MLE has been proposed that also takes prior information into ac-
count [48]. This method uses the emission probabilities to compute multiple maximum
likelihoods, and subsequently selects the one that best confirms the prior data. Therefore,
this method is called the Data First (DF) method.

2.5 Radio propagation

Advanced radio propagation (signal strength) models have been proposed in the field of
electrical engineering, e.g. [30,38,51], but these require complex technical specifications and
configurations of the antennas. This information is rarely available for purposes other than
network analysis and optimization [38, 54]. Our propagation model is simple in compar-
ison, but can be applied with just the cell plan data that is usually available for statistical
purposes [58].

5Both [31] and [48] refer to earlier work that led to this paper [59, 62].
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3 Signal strength model

In the methods that we will describe, we will overlay the geographic area of interest with
a grid. The main advantage of using grid tiles is that different geospatial datasets can be
combined without the need to calculate spatial intersections, which is a time consuming
operation. Moreover, the mathematics described below are easier since all grid tiles have
the same area. Henceforth, we denote G as the set of all grid tiles, and use the letter g to
denote one such grid tile. The set of all cells is denoted with A, where each element a is a
single cell.

This section describes a physical model of the propagation of signal strength originat-
ing from a single cell, by applying basic physical laws for signal propagation [56]. We
distinguish two types of cells: omnidirectional and directional, resulting in two different
propagation models. Omnidirectional cells have no aimed beam and their coverage area
can be thought of as a circular disk. Directional cells point in a certain direction and their
coverage area can be thought of as an oval with one axis of symmetry. In practice, small
cells are usually omnidirectional and macro cells (i.e. attached to cell towers or placed on
rooftops) are often directional [27].

3.1 Omnidirectional cells

For omnidirectional cells, propagation of the signal strength S(g, a) is modelled as

S(g, a) := S0 − Sdist(rg,a), (1)

where S0 is the signal strength at r0 = 1 meter distance from the cell in dBm (decibel-
milliwatts) and rg,a is the distance between the middle point of grid tile g and cell a in
meters. The value of S0 can be different for every cell and is assumed to be a known
property. In cell plan data, it is common to list the power P of a cell in Watt, rather than
the signal strength in dBm. The value of S0 can be calculated from P using the conversion
between Watt and dBm [16]:

S0 = 30 + 10 log10(P ). (2)

The function Sdist(r) returns the loss of signal strength as a function of distance r:

Sdist(r) := 10 log10(r
γ) = 10γ log10(r), (3)

where γ is the path loss exponent, which resembles the reduction of propagation due to re-
flection, diffraction and scattering caused by objects such as buildings and trees [55]. In free
space, γ equals 2, but in practice higher values should be used. As a rule of thumb, 4 can be
used for urban areas and 6 for indoor environmentsËIJ [51, 55]. Special situations, such as
tunnels, could improve the propagation such that a value of less than 2 is applicable. The
path loss exponent can be approximated by using the land use register.

In Fig. 1, the signal loss as a function of the distance is shown for a cell with 10W power
that is standing in an urban environment (γ = 4).

3.2 Directional cells

A directional cell is a cell that is aimed at a specific angle. Along this angle, the signal
strength is received at its best. However, the signal can also be strong in other directions. It
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Figure 1: Signal strength as a function of the distance for a specific cell.

is comparable to a speaker producing sound in a specific direction. The sound is audible in
many directions, but is much weaker at the sides and the back of the speaker. We specify
the beam of a directional cell a by four parameters:

• The azimuth angle ϕa is the angle from the top view between the north and the direc-
tion in which the cell is pointed, such that ϕa ∈ [0, 360) degrees. Note that cell towers
and rooftop cells often contain three cells with 120 degrees in between.

• The elevation angle θa is the angle between the horizon plane and the tilt of the cell.
Note that this angle is often very small, typically only four degrees. The plane that is
tilt along this angle is called the elevation plane.

• The horizontal beam width αa specifies in which angular difference from the azimuth
angle in the elevation plane the signal loss is 3 dB or less. At 3 dB, the power of the
signal is halved. The angles in the elevation plane for which the signal loss is 3 dB
correspond to ϕa ± αa/2. In practice, these angles are around 65 degrees.

• The vertical beam width βa specifies the angular difference from θa in the vertical
plane orthogonal to ϕa in which the signal loss is 3 dB. The angles in which the signal
loss is 3 dB correspond to θa ± βa/2. In practice, these angles are around 9 degrees.

Let δg,a be the angle in the elevation plane between the azimuth angle ϕa and the or-
thogonal projection on the elevation plane of the line between the center of cell a and the
center of grid tile g. Similarly, let εg,a be the angle from the side view between the line
along the elevation angle θa and the line between the center of cell a and the center of grid
tile g. Note that εg,a depends on the cell property of the installation height above ground
level. We model the signal strength for directional cells as

S(g, a) := S0 − Sdist(rg,a)− Sazi(δg,a, αa)− Selev(εg,a, βa), (4)

where S0 is the signal strength at r0 = 1 meter distance from the cell, in the direction of the
beam so that δ = 0 and ε = 0. The signal loss due to distance to the cell, azimuth angle
difference and elevation angle difference is specified by Sdist, Sazi and Selev, respectively.
The definition of Sdist is similar to the omnidirectional cell and can be found in Eq. (3).

Each cell type has its own signal strength pattern for both the azimuth and elevation
angles [56]. These patterns define the relation between signal loss and the offset angles, i.e.,
δg,a for the azimuth and εg,a for the elevation angles. We model the radiation pattern for
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Figure 2: Radiation patterns for the azimuth and elevation planes.

both Sazi and Selev by fitting a Gaussian curve using two parameters: the beam width and
the signal loss in the opposite propagation direction, which we set to 30 dB by default. For
implementation details we refer to [60] which is briefly described in Section 8.

The resulting patterns are shown in Fig. 2. The black line shows the relation between
signal loss and angle in the azimuth plane (left) and elevation plane (right). The grey circles
correspond to the signal loss; the outer circle means 0 dB loss (which is only achieved in the
main direction), the next circle corresponds to 5 dB loss, an so forth. The red lines denote
the angles corresponding to 3 dB loss. The angle between the red lines is αa in the azimuth
plane and βa in the elevation plane.

Although these models approximate the general curve of real radiation patterns, the
radiation patterns are more complex in reality, e.g. they often contain local spikes caused
by so-called side and back lobes [56].

Fig. 3 (top row) illustrates the signal strength at the ground level from above for a spe-
cific cell. In this case, the cell is placed at x = 0, y = 0 at 55 meters above ground level in
an urban environment (γ = 4), has a power of 10W, and is directed eastwards with an ele-
vation angle (tilt) of 5 degrees, a horizontal beam width of 65 degrees and a vertical beam
width of 9 degrees. Notice that the signal strength close to the cell, which on ground level
translates to almost under the cell, is lower than at a couple of hundred meters distance.
This is caused by relatively large ε angles at grid tiles nearby the cell.

Table 1: Indication of quality for signal strength in 4G networks.
Signal strength (dBm) Quality

−70 or higher Excellent
−90 to −70 Good
−100 to −90 Fair
−110 to −100 Poor
−110 or less Bad or no signal
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Figure 3: Signal strength (top row) and signal dominance (bottom row) at ground level.

4 Signal dominance model

The assignment of a cell to a mobile device does not only depend on received signal
strength, but also on the capacity of the cells. The process of assigning devices to cells
while taking into account the capacity of the cells is called load balancing. To capture this
process we introduce a transformation of the modelled signal strength into a variable that
we call signal dominance.

With signal dominance we aim to compensate for two phenomena. The first is the
switching of a device when it is receiving a bad signal to a cell with a better signal. Ta-
ble 1 describes how the signal strength can be interpreted in terms of quality for 4G net-
works [27]. The second phenomenon is the switching between cells that is influenced by
some decision making system in the network that tries to optimize the load balancing
within the network [54]. The specifics of this system are considered unknown.

What we do know is that MNOs aim to minimize the number of handovers to reduce
costs [7]. A handover is the process of switching the connection of a device from one cell
to another. At the same time, MNOs aim to provide sufficient received signal strength
for the connected devices. What an MNO considers to be sufficient is unknown, but we
assume that they aim for a certain threshold; a lower signal strength is a trigger for the
network to switch to a better cell. Because of handover costs, we assume that in case the
received signal strength of the connected cell is already above this threshold, the network
only switches to another cell for load balancing reasons. We assume that this threshold
value is approximately −90 dBm, which is the signal strength that is considered as good
according to Table 1ËIJ [27].
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Figure 4: Logistic relation between signal strength (dBm) and signal dominance, where
Smid and Ssteep are set to −92.5 dBm and 0.2 dBm respectively to resemble Table 1.

To model this take on the load balancing mechanism, we use a logistic function to
translate the signal strength S(g, a) to the more interpretable signal dominance measure
sdom(g, a). Let us define

sdom(g, a) :=
1

1 + exp
(
−Ssteep (S(g, a)− Smid)

) , (5)

where Smid and Ssteep are parameters that define the midpoint and the steepness of the
curve respectively. Fig. 4 shows an example of Eq. (5).

The signal dominance at ground level is shown in Fig. 3 (bottom row). Compared to
signal strength shown in Fig. 3 (top row), signal dominance is more focused on the area
that is in close proximity (in this example between 0 and 1500 meter) of the cell eastwards
(the propagation direction).

We will apply signal dominance to estimate the probability that a device will connect to
a certain cell. Suppose there are only two cells available for connection to an unconnected
device with received signal strength values S1 and S2, and signal dominance values sdom1

and sdom2. Then the probability that the first cell is chosen is estimated as sdom1/(sdom1 +
sdom2).

Fig. 5 shows these probability values in rounded percentages for a sequence of values
for S1 and S2. A percentage can be interpreted as the number of times out of one hundred
cases the network prefers the first cell over the second. This percentage is 50% on the
diagonal, i.e. when S1 = S2. However, the percentages are close to 50 when both S1 and S2

are sufficiently large. This follows our earlier made assumption, namely that above some
threshold (in this example around −90 dBm) the cell choice does depend (much) on signal
strength, but on other factors, such as cell capacity.

We will use these probabilities in the likelihood function we propose for the Bayesian
estimation method that is introduced in the next section.
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Figure 5: Percentages of connection to the first cell according to the signal dominance model
(with parameters Ssteep = 0.2 and Smid = 92.5).

5 A modular Bayesian framework

The key to the proposed localisation method is Bayes’ formula, which is used in the follow-
ing way:

P(g | a) ∝ P(g)P(a | g), (6)

where g represents a grid tile and a a cell. The probability P(g) that a device is located in
grid tile g without any connection knowledge represents the location prior about the rela-
tive frequency of events at grid tile g. The connection likelihood P(a | g) is the probability
that a device is connected to cell a given that the device is located in grid tile g. The location
posterior P(g | a) represents the probability that a device is located in grid tile g given that
the device is connected to cell a.6

The position of Eq. (6) in our modular Bayesian framework is illustrated in Fig. 6. The
location prior and connection likelihood are estimates produced from models we call the
location prior module and connection module, respectively. For the location prior we can
use different input data sources, such as land use data and cell plan data. The connection
module uses cell plan data. The location prior is then updated by the connection likelihood
to form the location posterior. The localisation method can at this point be considered as
complete and this posterior may be used for further statistical inference. Alternatively,
the posterior can be seen as a new prior and updated again with other likelihoods if the

6We note that the expression P(a | g) plays two distinct roles in our discussion. When we model P(g | a) via
Eq. (6), the cell a is considered fixed. Hence P(a | g) is not a probability distribution, but a likelihood function with
parameter g. On the other hand, when we will propose a model for P(a | g) in Section 5.1, it will be considered as
a probability distribution over a for fixed g. Although this distinction is not critical for the reader’s understanding
of our model, the intended interpretation should be clear from context. For simplicity, we will refer to P(a | g) as
the connection likelihood henceforth.
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Figure 1: A modular framework for modelling location posteriors.
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Figure 6: A modular framework for modelling location posteriors.

necessary information is available. Fig. 6 shows how a Timing Advance module can be
used to construct an updated location posterior.

The rest of this section is devoted to proposals for, and elaborations of these modules.

5.1 Connection likelihood

We define the connection likelihood P(a | g) for a cell a and a grid tile g to be the probability
that when a device located in grid tile g generates an event at some cell, it does so at a. We
model this probability as

P(a | g) := s(g, a)∑
a′∈A

s(g, a′)
, (7)

where A is the set of all cells in the MNOs network and s(g, a) ∈ [0,∞) is an indication of
how well the connection of cell a is in grid tile g.

Different choices for modelling s are possible, and any choice defines the connection
module in Fig. 6. For instance, when signal strength S is used, the connection likelihood
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becomes the ratio of the signal strength received from cell a to the total value of signal
strength received from all cells. We propose to use signal dominance sdom for the reasons
explained in Section 4.

When cell plan data is lacking, but service areas are known or can be estimated s(g, a)
is set to be

sF (g, a) :=

{
1 if g ∈ F (a),
0 otherwise,

(8)

where F (a) is called the service area which is defined as the set of grid tiles in which cell a is
available for connection. We assume that the network has perfect coverage, so that for each
grid tile g ∈ G there exists at least one cell a for which g ∈ F (a). Note that these service
areas may overlap, so a grid tile g may belong to multiple service areas. When using sF
instead of s, the connection likelihood defined by (7) can be rewritten as

PF (a | g) :=

{∣∣{a′ ∈ A | g ∈ F (a′)}∣∣−1 if g ∈ F (a),
0 otherwise.

(9)

A special case of these service areas is a tessellation where service areas do not overlap.
The most common example is the Voronoi tessellation, where Vor(a) is the set of grid tiles
of which the centroids lie in the Voronoi region surrounding cell a. In this case, s(g, a) is set
to be

sVor(g, a) :=

{
1 if g ∈ Vor(a),
0 otherwise.

(10)

The connection likelihood can hence be simplified to

PVor(a | g) = sVor(g, a). (11)

5.2 Location prior

We define the location prior P(g) as the probability that a device is present in grid tile g, such
that ∑

g∈G
P(g) = 1, (12)

where G is the set of all possible location estimates in our model, in other words, the whole
grid.

The definition of the location prior function will be based on assumptions about where
a device is expected to be. In this section, we propose four options: the uniform prior, the
land use prior, the network prior, and the composite priors.

5.2.1 Uniform prior

When we use the uniform prior, we assume the probability of a device being in any grid tile
is the same value for every grid tile:

Puniform(g) :=
1

|G|
. (13)
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A uniform prior is sometimes viewed as uninformative. In the case of mobile phone data,
however, the implicit assumption that any grid tile is as likely as the next can lead to an
underestimation of devices in urban areas and an overestimation of devices in rural areas.
We therefore advise against using the uniform prior as a default prior without consciously
assessing the plausibility of the underlying assumption.

When the uniform prior is combined with the connection likelihood in which the
Voronoi tessellation is used (or any other tessellation), see (11), the location posterior be-
comes

PVor(g | a) =

{∣∣{g′ ∈ G | g′ ∈ Vor(a)}
∣∣−1 if g ∈ Vor(a),

0 otherwise.
(14)

5.2.2 Land use prior

An alternative to the assumption of uniformity is to use administrative sources on land use
for the location prior. One would for example expect more devices in an urban area than
in a rural area. The land use prior is based on a proportional expectation of the number of
devices n(g) in grid tile g such that:

n(g) ∝ E[number of devices in g] for all g ∈ G. (15)

The land use prior is then defined as:

Pland use(g) :=
n(g)∑

g′∈G
n(g′)

. (16)

Due to the normalisation in its definition, the land use prior does not require an explicit
estimate of the number of devices per grid tile. Any proportional measure has the same
effect. One way to utilise this is when information is available on land use classes of the
grid, such as levels of urbanisation. Let there be K land use classes, each with their own
relative expected number of devices: u1, u2, . . . , uK . Let w1(g), w2(g), . . . , wK(g) ∈ [0, 1] be
the proportion of the grid tile that is covered by each class respectively, such that∑

k=1,...,K

wk(g) = 1 for all g ∈ G. (17)

Then n(g) can be modelled as
n(g) :=

∑
k=1,...,K

uk · wk(g). (18)

Before constructing such a land use prior, it is important to decide which data source
to use for land use, and subsequently which classes to use. For countries in which official
land use registers are unavailable, we recommend to use OpenStreetMap [15, 17, 53] (see
https://osmlanduse.org).

There are are many possibilities for how to choose u1, u2, . . . , uk. The ideal situation
is to set these numbers using auxiliary data, for instance vehicle count data [46] or public
transport data [20]. However, in many applications, such data is unavailable. Therefore,
the following approach can be used to set these numbers manually with general knowledge
about the region of study:
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• We advise to assign 1 to the class where most people are expected to be under normal
conditions. Note that this depends on several factors such as time, day, and country.
For estimating the nighttime population [11,12], it would make sense to set residential
land as the category where most people are expected to be. However for daytime
urban mobility analysis [2, 68], people are also expected to be in other urban land
classes, such as retail, industry, and transport areas.

• Next, the value of 0 can be assigned to classes where one does not expect any people
to be. Examples are water surfaces and wetlands, except for water sport regions and
waterways.

• The value for the other land use classes could be chosen with common sense, keeping
the factors such as time, date, and region into account. A small number may be
assigned to forest and agricultural land, whereas higher numbers to other classes of
built up land are recommended.

One of the downsides of the land use prior is that the assumptions based on adminis-
trative sources are less flexible in the case of major events. A festival in a location which
would ordinarily be a quiet meadow, but suddenly contains many devices, is not accounted
for in the land use prior. Such events can be recognized by the positioning and setup of the
cells. For instance, extra small cells are often used to compensate for large numbers of
devices [63, 65].

It can also be worthwhile to let the land use prior depend on the time and day, because
the expected number of devices may vary over time. For instance, in industrial areas the
expected number of devices is usually smaller during nighttime and weekends compared
to daytime and working days.

5.2.3 Network prior

The following prior, which we call the network prior, is defined as

Pnetwork(g) :=

∑
a∈A

s(g, a)∑
a∈A

∑
g′∈G

s(g′, a)
. (19)

Recall that s(g, a) is a general indication of the quality of the connection of cell a is in
grid tile g. When we use the modelled signal dominance sdom, the expected probability
P(g) becomes the total signal dominance in g divided by the total signal dominance in the
whole grid. Basically, the network prior reflects the distribution of the total signal over all
the grid tiles.

Note that we also used s in our connection likelihood, described in Section 5.1. When
this network prior is used in combination with the connection likelihood P(a | g) using the
same indicator s, then Eq. (6) can be simplified to

Pnetwork(g | a) ∝ s(g, a). (20)

The example in Section 5.4 includes calculations which illustrate this.
When using a service area indicator, defined as sF in (8), is used, the network prior

becomes
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Pnetwork(g) :=

∣∣{a′ ∈ A | g ∈ F (a′)}∣∣∑
a∈A

∣∣F (a)∣∣ . (21)

Observe that when a tessellation is used, such as the Voronoi tessellation, then this prior
is uniform. In a tessellation, service (or Voronoi) areas do not overlap. Therefore, when
assuming full network coverage (so each grid tile g is contained in exactly one service
area), the nominator of (21) is 1, and the denominator is equal to the total number of grid
tiles in G.

This prior contains implicit knowledge about where an MNO is expecting people. The
placement of cells is not without reason; generally, more cells are placed in crowded ar-
eas, such as city centers, than in quiet rural areas. Note that we could have defined the
network prior using the cell density. However, since the network capacity also depends
on the type and configuration of the cells and on the environment (buildings and trees
will generally have a negative effect on the propagation of the signal) we use the signal
dominance, through which these aspects are taken into account.

There are two aspects to be aware of when using the network prior. First, the place-
ment of cells is based on estimated peak traffic rather than the average expected number
of devices. MNOs normally provide better network coverage in railway stations than in
residential areas, since the estimated peak traffic is higher; people typically use their phone
more actively in railway stations and moreover, the expected number of devices fluctuates
more over time. The second aspect to be aware of is that MNOs might place extra (partially
overlapping) cells in an area for reasons other than an expected increase of the number of
devices. They might do this, for example, when they detect that the quality of the network
connection is insufficient on certain sections of land. In summary, the total signal strength
of the network does not always reflect the estimated number of devices.

5.2.4 Composite priors

Our fourth and final proposed prior is less theoretically substantiated and more driven by
practical considerations. One can combine all three priors described earlier as follows:

Pcomposite(g) := πuniform · Puniform(g) +

πland use · Pland use(g) +

πnetwork · Pnetwork(g),

(22)

where π := (πuniform, πland use, πnetwork) is any vector in R3 such that 0 ≤ πuniform ≤ 1, 0 ≤
πland use ≤ 1, 0 ≤ πnetwork ≤ 1, and πuniform + πland use + πnetwork = 1.

The components of π represent the contributions of the three previously defined priors
to the final composite prior Pcomposite(g). Hence both the advantages and disadvantages of all
three priors are mixed. The aim of the composite prior is to have a good balance, specified
with π, between these advantages and disadvantages. What a good balance is depends
on the application. A composite prior is harder to interpret from a theoretical point of
view compared to the three priors discussed so far, which can be seen as an additional
disadvantage.

A sensitivity analysis can be used to assess how the location posterior is affected by
changes in π. The approach of such a sensitivity analysis is the following.
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• For the area of interest, construct the candidate priors, e.g. the ones we discussed.
• Compute the composite prior for various values of π.
• With a fixed connection likelihood, compute the location posterior for each of the

composite priors.
• Compare the location posteriors. This can be done visually or by using the a quantita-

tive distance metric such as the Kantorovich-Wasserstein Distance [5] (KWD), which
is used to compare two probability distributions.

5.3 Incorporating Timing Advance data

Some MNOs include in their signalling data a so called Timing Advance variable [1]. Timing
Advance is also known as round-trip time [71], or trip-time bins [41]. The value of such a
variable represents a time duration, and it is used to estimate and adjust for communica-
tion delays. In combination with the speed of radio waves it can alternatively be used to
estimate the distance between device and cell [28].

In the case of 4G signalling data the Timing Advance variable takes on values in the
discrete set T = {0, 1, . . . , 1282}. If an event then contains such a value τ for this variable,
the associated device is located approximately in an annulus centered around the antenna
of width 78m and an inner circle of radius τ · 78m. For instance, τ = 100 implies that the
distance between cell and device is approximated between 7800m and 7878m. Since there
are |T | = 1283 annuli, the maximum theoretical distance is 1283 ∗ 78m ≈ 100 km.

When 5G signalling data are used, the distance can be estimated more accurately, be-
cause the widths of the annuli are 39m. Furthermore, since τ takes on values in the discrete
set T = {0, 1, . . . , 3846}, there are |T | = 3847 annuli, and therefore the maximum theoreti-
cal distance is 3847 ∗ 39m ≈ 150 km.

One should be aware, though, of errors present in this approximation. As the authors
of [47] observed, the Timing Advance variable may take on different values while the de-
vice has the same distance to the cell, and even when the device is at the same location at
different times.

Knowledge of τ may be used to improve the location posterior P(g | a) through
Bayesian updating:

P(g | a, τ) ∝ P(g | a)P(τ | a, g), (23)

where the Timing Advance likelihood P(τ | a, g) can be modelled as the fraction of the grid tile
g which lies in the annulus around the cell a specified by τ . Since τ has a certain maximum
value (1282 for 4G and 3846 for 5G), this new location posterior P(g | a, τ) equals 0 for grid
tiles farther than the maximum theoretical distance (100 km for 4G and 150 km for 5G).

Computing the likelihoods P(τ | a, g) for all Timing Advance annuli around all cells
a in the network and all tiles g in the grid that is used might prove to be too expensive
computationally if calculated in the way we suggest above. One could therefore model
P(τ | a, g) more coarsely as being 1 if the centroid of g lies in the annulus specified by τ ,
and 0 otherwise. If the grid tiles used are substantially larger than the widths of the annuli
(78m for 4G and 39m for 5G), though, such as the 100 by 100 meter tiles we propose, this
coarser Timing Advance likelihood model could increase the location estimation error for
devices located in the smaller annuli. These errors can be mitigated by merging adjacent
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Figure 7: A schematic top view of an island of 1 by 3 kilometers.

annuli. For example, one could model

P(τ | a, g) :=

{
1 if g ∈ Ann(a, τ, b),
0 otherwise,

(24)

where Ann(a, τ, b) specifies the grid tiles whose centroids lie in the annuli of cell a specified
by {τ − b, . . . , τ + b}, where b is a globally defined integer, independent of τ , a and g, that
determines how many annuli are merged on both sides to the annulus corresponding to τ .

5.4 Calculation example

To illustrate the computations involved in the model, we consider a small fictional island of
1 by 3 kilometers. All numerical values mentioned in this example can be found in Table 2.
The island can be divided into three grid tiles of equal size, g1, g2 and g3. Note that for a
more realistic example we would use much smaller grid tiles, but for simplicity each tile in
this example measures 1 by 1 kilometer.

There are two towns A and B on the island, of which the latter is about three times as
large as the former. Two cells, a1 and a2, have been installed. These are illustrated in Fig. 7.
Cell a1 has a perfect signal in g1 and g2, but no signal in g3, while cell a2 has a perfect signal
in g3 and g2, but no signal in g1. In this example we express a perfect signal and no signal
with values 1 and 0 respectively.

We calculate the four priors as defined in Section 5.2 based on the above information.
The connection likelihood for each cell is calculated according to Eq. 7 based on the signal
dominance values. Finally, the connection likelihood and priors are combined to location
posteriors for all combinations of cells and priors.

The location posterior allows for all kinds of further calculations such as modelling the
distribution of devices or even persons over grid tiles, when connection events are counted
for each cell during a time interval. This process is complicated enough to be viewed as a
separate research topic, especially when one is interested in probability distributions rather
than point estimates. We consider it part of the further statistical inference in the framework
from Fig. 6.

5.5 Statistical inference

The outcome of the modular system described in this paper is the location posterior
P(g | a), which specifies the probability that a device is located in grid tile g, given that
it is connected to cell a. This can be used to calculate the total number of devices that are
present at a specific location during a specific time interval, or the number of devices that
move from one city to another. However, many applications in official statistics are about
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Table 2: The corresponding numbers of the fictional example where the composite prior is
based on π := (πuniform, πland use, πnetwork) = (0, 1/2, 1/2).

Grid tile g

g1 g2 g3

Signal dominance s(g, a1) 1 1 0
s(g, a2) 0 1 1

Location priors Puniform(g) 1/3 1/3 1/3
Pland use(g) 1/4 3/4 0
Pnetwork(g) 1/4 2/4 1/4
Pcomposite(g) 1/4 5/8 1/8

Connection likelihood P(a1 | g) 1 1/2 0
P(a2 | g) 0 1/2 1

Location posterior Puniform(g | a1) 2/3 1/3 0
Puniform(g | a2) 0 1/3 2/3
Pland use(g | a1) 2/5 3/5 0
Pland use(g | a2) 0 1 0
Pnetwork(g | a1) 1/2 1/2 0
Pnetwork(g | a2) 0 1/2 1/2
Pcomposite(g | a1) 4/9 5/9 0
Pcomposite(g | a2) 0 5/7 2/7

numbers of people, for instance the number of visitors of a tourist destination during holi-
days, or the number of people who commute between two cities. Additional methods and
auxiliary data are needed to translate estimates of devices to estimates of people [52].

A generic framework has been proposed to organize the production process needed for
statistical inference on MNO data [49, 52]. According to this framework, the production
process runs through three distinct layers. The bottom layer is called the data- or D-layer
and consists of the processing of raw mobile network data, which takes place at the MNO.
The processing methods that take place in this layer are dependent on the mobile network
technology used. The statistics- or S-layer is the top layer in which the processed mobile
phone data is used for statistical purposes. The convergence- or C-layer connects these two
layers with processing mobile network data sources into data that can be used for statistical
purposes. This intermediate layer is needed since mobile network technology is complex
and constantly changing. The output of the C-layer should be a stable source for the S-layer,
in which this is used in combination with other data sources to produce statistics.

Our framework takes place in the D-layer, since mobile network data is processed for
constructing the connection likelihood. Note that it does not matter which method is used
for this process, since all described methods use mobile network data, e.g. the Voronoi
method uses cell tower locations. The output of our framework, i.e. the location posterior,
belongs in the C-layer, since this does not depend on technology, and hence can be used
directly for statistical purposes. Using prior information could be theoretically be placed
in the S-layer. Note that the process should ideally be run at the MNO due to potential
privacy issues.
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6 Validation methods

The methods presented in this paper have been developed within the European Statistical
System. They have been used in studies with MNO data in several European countries [58].
The model parameters have been configured for each application in cooperation with radio
network specialists from the partner MNOs. Several validation methods have been applied
in internal studies to assess how realistic the methods are in practice. Due to confidentiality,
the results cannot be shared. In this section we describe these and other validation methods
and how they can be applied.

We recommend to validate the methods before applying them, since mobile networks
are different from each other in terms of configuration and calibration. In other words, a
valid location estimation method for a certain mobile network do not automatically imply
validation for another mobile network.

Each of the validation methods described below can also be used for model calibration.
After calibration we recommend to validate the methods with other ground truth data.

6.1 Ground truth data

Data that can be considered as ground truth data for the modelled signal strength values
S(g, a) are field measurements, which can be taken either from the center of grid tile g, or
at various sample points. Note that measurements within one grid tile may have a large
variation due to building and tree reflections and due to the possibility of being in- or
outside of buildings.

MNOs often use field measurements in combination with their own propagation mod-
els for network analysis and optimization. These propagation data consist of a signal strength
value S(g, a) for each grid tile g and cell a given that g is located in the service area of a.
A common by-product derived from these data is the Best Service Area (BSA) map, which
visualises the cell with the strongest signal strength in each grid tile.

Field measurements can be taken with a multi-band wireless measurement receiver or a
smart phone, which has the advantage that it is easier and cheaper to collect large amounts
of field measurements data. Smart phone apps such as Network Cell Info [36] measure
the signal strength of the connected cell and other nearby cells, as well as their geographic
locations.

Face validation of the location posterior can be done with popular events, such as foot-
ball matches and pop festivals [58]. Ground truth information for this task are the exact
geographic areas in which the events took place, and the exact time and date of the events.
Less important are the visitor counts, since our aim is to estimate the number of devices,
not the number of people (which is for further statistical inference).

GPS data from smart phones can be used as ground truth data to validate the location
posterior. For each measurement, the GPS coordinates of the device as well as the identifi-
cation number of the connected cell are required (and the corresponding Timing Advance
value in case Timing Advance data are used in the estimations). Smart phone owners have
to opt in to collect field measurement data or GPS data from their devices.

www.josis.org

http://www.josis.org


BAYESIAN LOCATION ESTIMATION OF MOBILE DEVICES USING A SIGNAL STRENGTH MODEL 49

Figure 8: BSA map derived from the signal strength model using fictional cell plan data.

6.2 Signal strength validation

6.2.1 BSA map comparison

A quick and easy validation method is the BSA map comparison. A fictional example of a
BSA map is depicted in Fig. 8. Fictional cell plan data is used here, where the black dots
indicate the location of directional macro cells, white dots omnidirectional small cells, and
the colored areas indicate which cell has the strongest signal strength. This BSA map is the
result of the signal strength model. This map can be compared to the BSA map of ground
truth data.

Besides a visual inspection of the differences between both maps, the comparison can
be quantified, for instance with the percentage of grid tiles that are identical in both maps.
Additionally, for each cell a normalized confusion matrix can be calculated from which
metrics such as precision and recall can be derived [43].

6.2.2 Comparison of signal strength distributions

The BSA map only shows which cell has the strongest signal strength per grid tile. When
ground truth propagation data are available, signal strength values per cell can be com-
pared with those from the signal strength model.

This comparison can be made visually, by creating a heat map where the differences
between the ground truth and the modelled signal strength values per cell are mapped to
a diverging color scale.

Another approach is to apply a two-dimension distance function between two probabil-
ity distributions, such as the Kantorovich-Wasserstein Distance [5] (KWD). When a proba-
bility distribution is seen as a pile of soil, the KWD is interpreted intuitively as turning one
pile of soil into another by moving as little soil as possible.
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In order to apply the KWD for signal strength values, these values need to be normal-
ized per cell. This can be done with

PS′(g | a) = S′(g, a)∑
g′∈G

S′(g′, a)
,

where S′(g, a) = min
(
(S(g, a) + 130,−130

)
serves as a transformation.

For each cell a we obtain two probability distributions, namely one for the modelled
signal strength values and one for the ground truth propagation data, which are compared
to each other with the KWD.

The exact KWD distance value is computationally expensive to compute, but approx-
imations exist that can be computed much faster [6]. Open source implementations exist,
such as the package kantorovich [33] for the programming language R.

6.3 Signal dominance validation

In this section we describe a method to validate the signal dominance model that is equiva-
lent to a coin fairness test. To test whether a coin is fair, the coin should be tossed a number
of times, the more the better. With standard statistics, it can be stated with a certain confi-
dence whether the coin is fair or not based on the tossed number of heads and tails.

Instead of a coin toss, we consider the situation described in Section 4 in which there
are only two cells available for connection with signal strength values S1 and S2 and sig-
nal dominance values sdom1 and sdom2. Recall that we have calculated the probability of
connection to the first cell as sdom1/(sdom1 + sdom2) for a range of signal strength values.
These probabilities are shown in Fig. 5 as percentages, which can also be interpreted as the
expected number of cases the network chooses the first cell, out of 100 similar cases.

These probabilities can be validated with field measurement data from a set of smart
phones during a certain period. For each measurement observation, let S1, . . . Sk with k ≥
2 be the number of measured cells, where S1 is the signal strength measured from the
connected cell, and the other values are signal strengths from the other nearby cells.

These measurement observations over time are not independent, because in case the
network connects a device to a certain cell, it will probably remain connected to this cell
if the device does not move and if capacity of this and nearby cells remains the same. In
order to keep the observations as independent as possible, we recommend to keep some
time between measurements, say one hour. Furthermore, since a device will usually not
move during night time, it will likely remain connected to the same cell. Therefore, we
recommend to ignore measurements taken during night time.

An observation for which k > 2 can be split into k − 1 observations, namely
(S1, S2), . . . (S1, Sk). We interpret each observation (S1, Si) as if there are only two available
cells of which the first one is chosen. In order to obtain enough observations of the same
signal strength values should be discretized, e.g. rounded to the values used in Fig. 5: e
pairs (S1, S2), the signal strength v−50,−60, . . . ,−130.

For each pair of discretized signal strength values (S1, S2) we count the number of ob-
servations in our field measurement data, and compare them to the expected number of
observations. This comparison can be done visually, i.e. by creating charts like the one
depicted in Fig. 5 for the actual observations and for the expected observations. Another
approach is to apply a binomial test for each pair.
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6.4 Location posterior validation

We recommend to validate the location posterior after the signal strength and signal dom-
inance model have been validated, because these are used in the calculation of the location
posterior.

6.4.1 Face validation with popular events

Popular events, such as football matches or pop festivals, can be used to validate the loca-
tion posterior [58]. The area in which the events took place are known beforehand, e.g. a
football stadium or a pop festival terrain. This area can be compared to the spatial distribu-
tion of devices that follows from the location posterior distributions of the logged devices.

For this purpose we require ca, which is the number of unique devices of which an
event has been logged with cell awithin a given time interval (e.g. during a football match).
Hence we derive a straightforward formula for the estimated number of devices per grid
tile:

N(g) =
∑
a∈A

caP(g | a) (25)

This spatial density of devices can be plotted on a map in order to see to which extent
the peak density areas correspond to the areas in which the events took place. The abso-
lute estimated numbers of devices cannot be used for this analysis, because the number of
devices is estimated, not the number of people. What matters in this analysis are the areas
in which the peaks are estimated.

When this validation method is used, it is important to know that MNOs often place ex-
tra small cells to guarantee mobile communication during crowded events [63, 65]. There-
fore it is recommended to make sure that information about these extra small cells is in-
cluded in the used cell plan data.

6.4.2 Validation with GPS data

The location posterior can be validated with GPS data. For each measurement, the GPS
coordinates and the identification of the connected cell are logged. In order to validate the
uncertainty of the location posterior it is important to collect as many measurements per
cell as possible.

Let m(g, a) be the number of measurements where a device is located in grid tile g
(according to GPS) and connected to cell a. The corresponding probability distribution per
cell is defined as

Pm(g | a) = m(g, a)∑
g′∈G

m(g′, a)
,

We can use the KWD metric to compare this distribution to the posterior distribution
P(g | a).
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Figure 9: The application of our signal strength model.

7 Application

A fictional example that resembles a real-world situation is illustrated in Fig. 9(a), where
a base map is shown with artificially placed cells. The northwestern part of this area is
urbanised, while the rest is mostly rural with some small villages. The black dots represent
directional macro cells, which are deployed in triplets, with propagation angles about 120
degrees apart from each other. The white dots represent omnidirectional small cells.

The Voronoi map for this example, which we will use as a reference for our signal
strength model, is shown in Fig. 9(b). We apply the Voronoi algorithm only to macro
cells, where we shift the locations of the Voronoi points towards the propagation direc-
tions. Subsequently, the grid tile areas in which the small cells are located are subtracted
from the Voronoi tessellation, and assigned to the small cells.

Fig. 9(c) shows the BSA map based on our signal strength model. This map can be used
to validate the signal strength model, as discussed in Section 6.2.1

Figs. 9(d) and (e) show the signal strength (in dBm) and signal dominance (sdom) of one
specific cell respectively, which is colored red. The propagation direction of this is south-
west. Validation of the shown data has been described in Sections 6.2.2 and 6.3.

Fig. 10 shows the results of our modular framework for the same region, shown in (a).
The rest of this figure is arranged as a cross table where the location priors are shown as
rows in (c), the connection likelihoods as columns in (b), and the location posteriors as
table cells in (d). For instance, the bottom right map of this figure is the result of using the
composite prior (which consists of half the land use prior and half the network prior) and
the signal dominance likelihood. For the network prior we have used signal dominance,
i.e. s is set to sdom in Eq. (19).
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In the maps shown in Fig. 10(b), (c), and (d), sequential color palettes have been applied
where yellow corresponds to relatively low values and respectively dark green, blue, and
brown correspond to relatively high values. For instance, the dark blue areas in the land use
prior map correspond to the areas with buildings and roads, and therefore, where devices
are expected to be. The blue areas in the network prior map highlight the areas that have a
high network coverage.

Two different connection likelihoods for the selected cell are shown in Fig. 10(b). Ob-
serve that the Voronoi likelihood has the same shape as the Voronoi area of this cell shown
in Fig. 9(b) in orange, which follows directly from Eq. (11) which states that a likelihood
value equals 1 if and only if the corresponding grid tile is located in the Voronoi area. The
high values for the signal dominance likelihood are located in the south/south-west direc-
tion of the cell, whereas the propagation direction is south-west. This can be explained by
the fact that there is less overlap with other cells in the south direction in comparison to the
west direction.

The combination of the location priors and the connection likelihoods results in the
location posteriors shown in Fig. 9(d). The land use prior is seen to have a strong effect on
the posterior distributions. The network prior places more weight on the areas with better
network coverage. Note that, by applying Eq. (20), the combination of network prior and
signal dominance likelihood results in a posterior distribution that is a rescaled version of
the signal dominance, shown in Fig. 9(e). Finally, the combination of the composite prior
and signal dominance likelihood takes into account both land use and network coverage,
and would therefore be a good candidate to be used for further statistical inference.
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Figure 10: Example showing how three location priors and two connection likelihoods are
combined into six location posteriors.
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Figure 11: Updated location posterior with Timing Advance.

The final step in our modular framework is to update the location posterior by Timing
Advance. Recall from Section 5.3 that Timing Advance is a variable in MNO data from
which the distance between the device and the cell can be estimated. Fig. 11 illustrates the
location posterior shown in the bottom right map of Fig. 10 (composite prior, signal domi-
nance likelihood) updated with τ values of 15, 25, and 35. The Timing Advance likelihood
defined by Eq. (24) has been used with parameter b set to 1, which means three annuli
have been merged, in Fig. 11(a) the annuli that correspond to τ values of 14, 15, and 16.
In this application, the width of each annulus is 78.12 meter, so this means that only grid
tiles whose centroids are between 1094 to 1328 meters away from the selected cell have a
positive probability in the updated posterior. For Fig. 11(b) and (c) those distance intervals
are [1878, 2109] and [2656, 2890] respectively.
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8 Implementation

The methods described in this paper have been implemented in mobloc [60] and
mobvis [61], packages for the programming language R. The former package is used for
the calculations, the latter for the graphical user interfaces and visualizations. In this sec-
tion we present a general work flow for mobloc and illustrate how mobvis is used in this
work flow. Details and reproducible examples can be found in the documentation of the
packages.

The general work flow of mobloc is depicted in Fig. 12. The first step in the work flow is
to collect all relevant datasets. The most important dataset is is the cell plan. The geograph-
ical locations of the cells is required, whereas other physical properties, such as height,
propagation direction, and power, are recommended in order to run the signal strength
model. Other datasets that can be used as input are elevation data, land use data, and
administrative region boundaries.

The collected data need to be in the correct format in order to be processed. Infor-
mation about which object classes are supported are described in the package documen-
tation [60]. The preprocessing stage is also used to make sure that the spatial objects
have one common Coordinate Reference System (CRS). It is strongly recommended to
use a CRS that preserves areas and distances for the region of interest [37]. The function
validate_cellplan is used to validate the cell plan and to check whether it is consistent
with the other input data objects.

Start Collect
data

Signal strength 
model (optional)

Further
statistical
processing

Preprocess
data

Modular
framework

Figure 12: Work flow of mobloc.

The third step in the work flow is to run the signal strength model. This step is only
required if the network prior is used or if the signal strength model is used in the connec-
tion likelihood module. The parameters for the signal strength model can be configured
with a graphical user interface started with the function setup_sig_strength_model
from the mobvis package. A screenshot of this tool is shown in Fig. 13. The func-
tion compute_sig_strength from the mobloc package is used to compute the signal
strength and the corresponding signal dominance.

[!htb]

Table 3: An overview of mobloc functions.
Module Option Function

Location prior Uniform prior create_uniform_prior
Network prior create_network_prior
Auxiliary data (e.g. land use) prior create_prior

Connection likelihood Signal strength create_strength_llh
Voronoi create_voronoi_llh

Bayesian update Posterior P(g | a), see Eq. (6) calculate_posterior
Posterior P(g | a, τ), updated update_posterior_TA

with Timing Advance, see Eq. (23)
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Figure 13: Screenshot of the signal strength model setup tool.
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Figure 14: Screenshot of the mobloc exploration tool.

The fourth and final step is to run the whole modular framework that is depicted in
Fig. 6. The functions that correspond to the modules are listed in Table 3.

The mobvis package contain functions to visualize the results. All maps from
Figs. 9, 10, and 11 have been created with mobvis. This package also contains an inter-
active tool, started with explore_mobloc, in which the results are visualized. Via this
tool, it is possible to select different cells, and compare different module options. A screen-
shot is shown in Fig. 14, in which the same fictional cell plan data is used as described in
Section 7.

The output of mobloc is a data table with the following variables: cell identification
number, tile identification number, optionally a Timing Advance value, and the corre-
sponding posterior probability. This table can be used for further statistical processing
and analysis with MNO data [49, 52].

9 Conclusion and discussion

With the work presented in this paper, we have contributed to the emerging research on
estimating geographic locations of mobile devices using MNO data. We proposed a signal
strength and a signal dominance model to estimate the likelihood probabilities that a device
is connected to a cell given its geographic location. These likelihood probabilities have
already been applied in further statistical inference [31, 48, 52]. Calibration and validation
of the signal strength and dominance model is recommended (see Section 6). This is not a
one-off task, but a task that has to be performed for each study or application, since each
mobile network is configured differently.

Propagation models have been developed that are much more sophisticated than the
model we propose [30, 38, 51], but also require complex technical specifications of the cells
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and network measurement data. Although we were unable to test these models due to a
lack of data, we assume they are more realistic, because they take the 3D environment into
account for modeling the reflection, absorption, and scattering of propagation. In contrast,
our signal strength model only takes the type of environment into account via land use.
This has the disadvantage that the propagation around specific unusual features of the
environment, such as very large buildings, may not be modeled accurately. However, when
our signal strength model is used for statistical applications on a larger level than street
level, e.g. mobility on neighbourhood level, the accuracy of the signal strength model may
be sufficient. This should be confirmed with validation, using the methods described in
Section 6.

The advantage of the signal strength model in comparison to the more complex propa-
gation models is that it is relatively simple, and therefore easier to apply, not only because
of lower data requirement but also because of lower computational complexity. This is es-
pecially important for large scale applications in developing countries [35, 67], where data
and computational resources are often limited [58].

We encourage further development of propagation models with lower data require-
ments. Other cell plan data variables can be helpful to improve our model, in particular
the radio frequency bands at which cells are operating, which have a great impact on phe-
nomena such as reflection, absorption, and scattering of the signal [56]. So far, our signal
strength model only uses land use to approximate the path loss exponent. 3D models of
the environment can developed to take these phenomena into account [38].

We developed the signal dominance model on assumptions about load balancing which
we described in Section 4. As with the signal strength model, calibration and validation of
the signal dominance model is recommended for each new study or application, since each
cellular network is configured differently.

Further research is needed on how MNOs manage handovers between networks of
different generations and operating frequency bands. We currently assume that a mobile
device only connects to cells from one network. When this assumption holds, the methods
can be applied independently for each network. In reality however, this assumption might
not hold for reasons such as coverage gaps, capacity limits, and network issues. More
research is also needed on how MNOs handle roaming in cross-border regions and how
this can be modelled.

We have explored several priors. We argued in Section 5.2 that each of the non-uniform
priors has predictive value about where devices are located. Therefore we would recom-
mend each of them over the uniform prior when the likelihood does not use any empiri-
cal data; the likelihood proposed by [41] uses empirical data, namely aggregated Timing
Advance data about the distribution of past connections. Such data already contain infor-
mation about where devices are expected to be, and therefore we agree with [41] that a
uniform prior is recommended in that case.

When a non-uniform prior is used, it is important to assess the quality of the used
prior data. Land use data may not always be of good quality or up-to-date, which may
cause biased estimates. The same holds for the network prior; if an indicator is used that
does not reflect how well the connection is, for instance when a wrongly calibrated signal
dominance model is used, then estimates may be biased.

We have illustrated that the Bayesian framework can be extended with the use of addi-
tional network measurement data in Section 5.3, in this case Timing Advance data. Since
these data are accurate measurements required for mobile communication, it is expected
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that the updated posterior is an improvement of the original posterior. Fig. 11 illustrates
how substantial this improvement can be in practice. Validation is still recommended to
make sure there are no errors in the estimation process.

The Bayesian estimation method is used to estimate the location of a single device.
However, the method can also be used to estimate the spatial distribution of all connected
devices, as shown in Eq. (25). Two alternative methods are MLE and DF as described in
Section 2.4).

The main advantage of the MLE and DF methods is that they extract extra informa-
tion that becomes available from the number of devices that have been counted per cell.
According a simulation study these methods perform better than the Bayesian approach
when using a uniform priorËIJ [48]. More specifically, the population density estimates
from these methods are more similar to the synthetic ground truth population than the
estimated densities from the Bayesian approach using Eq. (25).

The main advantage of the Bayesian approach is that it is easier to understand (i.e.
better explainable) and much faster to compute. Furthermore, the MLE and DF rely more
on the likelihood probabilities than the Bayesian approach does. In situations where prior
data are available that have good predictive value, or when empirical data from past con-
nections [41] are available, the Bayesian approach may be preferable. More research is
required to compare the approaches in different scenarios.

The Bayesian approach for spatial density estimation, as well as the MLE and DF meth-
ods, only use event data logged at a certain time. However, when we consider the dynamic
behaviour of a device and take into account the sequence of logged events, much more
information can be extracted by interrelating the corresponding posterior probabilities, for
instance by using a Hidden Markov Model [52]. Such methods can be used to estimate
trajectories, which is a key step in statistical inference on dynamic applications, such as
urban mobility, but also to improve spatial density estimations.

More research is needed to validate and compare the location estimation methods with
real-world data. However, access to MNO data is still a major bottleneck for statistical
inference [57]. As an alternative, we encourage further development of simulated event
data [40].
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